
LUNA

Katherine J. Temkin

Apr 29, 2024

CONTENTS:

1 Introduction 3

2 Status & Support 5
2.1 Support for Device Mode . 6
2.2 Support for Host Mode . 7
2.3 “Reference” Boards . 7

3 Getting Started 9
3.1 Setting up a Build Environment . 9

4 LUNA On Your Own Hardware 11
4.1 High-Speed via a ULPI PHY . 11
4.2 Full-Speed using FPGA I/O . 12

5 Core USB 2.0 Device Gateware 13
5.1 Conceptual Components . 13
5.2 usb2.device Components . 15
5.3 usb2.packet Components . 17
5.4 usb2.reset Components . 25

6 Gateware Endpoint Interfaces 27
6.1 Exclusivity . 27
6.2 usb2.endpoint Components . 27
6.3 Provided Endpoint Interfaces . 30
6.4 usb2.control Components . 30
6.5 usb2.interfaces.eptri Components . 31
6.6 Bulk Endpoint Helpers / usb2.endpoints.stream Components 31
6.7 Interrupt Endpoint Helpers / usb2.endpoints.status Components 33

7 Self-made Hardware Bringup 35
7.1 Prerequisites . 35
7.2 Bring-up Process . 35
7.3 Build/upload Saturn-V . 35
7.4 Build/upload Apollo . 37
7.5 Running Self-Tests . 37
7.6 Troubleshooting . 38

8 Generated indices 39

Python Module Index 41

i

Index 43

ii

LUNA

This is the documentation for the LUNA gateware library; and the developer document for the LUNA USB multitool
hardware and software.

Much like the LUNA hardware, gateware, and software, this documentation is a work in progress. Contributions are
always appreciated.

CONTENTS: 1

LUNA

2 CONTENTS:

CHAPTER

ONE

INTRODUCTION

Note: LUNA is still a work in progress; and while much of the technology is in a usable state, much of its
feature-set is still being built. Consider LUNA an ‘unstable’ library, for the time being.

Welcome to the LUNA project! LUNA is a full toolkit for working with USB using FPGA technology; and provides
hardware, gateware, and software to enable USB applications.

Some things you can use LUNA for, currently:

• Protocol analysis for Low, Full or High speed USB. LUNA provides both hardware designs and gateware

3

LUNA

that allow passive USB monitoring. When combined with the ViewSB USB analyzer toolkit, LUNA hard-
ware+gateware can be used as a full-featured USB analyzer.

• Creating your own Low, Full or High speed USB device. LUNA provides a collection of Amaranth gateware
that allows you to easily create USB devices in gateware, software, or a combination of the two.

• Building USB functionality into a new or existing System-on-a-Chip (SoC). LUNA is capable of generating
custom peripherals targeting the common Wishbone bus; allowing it to easily be integrated into SoC designs; and
the [luna-soc](https://github.com/greatscottgadgets/luna-soc) library provides simple automation for developing
simple SoC designs.

Some things you’ll be able to use LUNA for in the future:

• Man-in-the-middle’ing USB communications. The LUNA toolkit will be able to act as a USB proxy, transpar-
ently modifying USB data as it flows between a host and a device.

• USB reverse engineering and security research. The LUNA toolkit will serve as an ideal backend for tools
like FaceDancer; allowing easily emulation and rapid prototyping of compliant and non-compliant USB devices.

More detail on these features is covered in the source, and in the remainder of this documentation.

4 Chapter 1. Introduction

https://github.com/usb-tools/viewsb
https://github.com/greatscottgadgets/luna-soc
https://github.com/usb-tools/facedancer
https://github.com/greatscottgadgets/luna

CHAPTER

TWO

STATUS & SUPPORT

The LUNA library is a work in progress; but many of its features are usable enough for inclusion in your own designs.
More testing of our work – and more feedback – is always appreciated!

5

LUNA

2.1 Support for Device Mode

Feature Status
USB Communications high-/full-speed with UTMI PHY complete, needs testing

high-/full-speed with ULPI PHY feature complete
full-speed using raw gpio / pull resistors feature complete
super-speed using PIPE PHY basic support complete;

still experimental
super-speed using SerDes PHY in progress
low speed, via ULPI/UTMI PHY untested
low speed, using raw gpio / pull resistors unsupported, currently

Control Transfers / End-
points

user-defined feature complete

fully-gateware-implemented, with user vendor request
handler support

complete, could use im-
provements

CPU interface working; needs more in-
terfaces & examples

Bulk Transfers / End-
points

user-defined feature complete

IN stream helpers feature complete
OUT stream helpers feature complete
CPU interface working; needs more in-

terfaces & examples

Interrupt Transfers /
Endpoints

user-defined feature complete

status-to-host helper complete, needs testing
status-from-host helper planned
CPU interface working; needs more in-

terfaces & examples

Isochronous Transfers /
Endpoints

user-defined planned

IN transfer helpers complete; needs examples
and testing

OUT transfer helpers planned
CPU interface planned

USB Analysis basic analysis basic analysis working, in
progress

full analysis support planned

6 Chapter 2. Status & Support

LUNA

2.2 Support for Host Mode

The LUNA library currently does not provide any support for operating as a USB host; though the low-level USB
communications interfaces have been designed to allow for eventual host support. Host support is not currently a
priority, but contributions are welcome.

2.3 “Reference” Boards

The LUNA library is intended to work on any FPGA with sufficient fabric performance and resources; but testing is
only performed on a collection of reference boards.

Board FPGA Family PHY Status
LUNA Hardware ECP5 ULPI x3 (USB3343) Fully Supported
OpenVizsla USB Analyzer Spartan 6 ULPI (USB3343) Fully Supported
LambdaConcept ECPIX-5 ECP5 ULPI (USB3300),

SerDes PHY
High-Speed Fully
Supported / Super-
Speed In Progress

TinyFPGA Ex ECP5 SerDes PHY Planned Super-
Speed Device Mode

Logicbone ECP5 SerDes PHY Full-Speed Fully
Supported / Super-
Speed In Progress

Daisho Cyclone IV PIPE (TUSB1310A) Planned Super-
Speed Device Mode

PHYWhisperer-USB Spartan 7 UTMI Planned Device
Mode Support

LambdaConcept USB2Sniffer Artix 7 ULPI x2 (USB3300) Fully Supported
OrangeCrab ECP5 no hardware PHY Full-Speed/Device

Mode Support
ULX3S ECP5 no hardware PHY Full-Speed/Device

Mode Support
Fomu PVT/Hacker iCE40 UP no hardware PHY Full-Speed/Device

Mode Support
Fomu EVT3 iCE40 UP no hardware PHY Full-Speed/Device

Mode Support
iCEBreaker Bitsy iCE40 UP no hardware PHY Full-Speed/Device

Mode Support
Glasgow iCE40 HX no hardware PHY Planned Full-Speed

Support
TinyFPGA Bx iCE40 LP no hardware PHY Full-Speed/Device

Mode Support
Digilent Nexys Video (SS with add-on
board)

Artix 7 FMC for PIPE
(TUSB1310A) add-
on boards

Super-Speed Fully
Supported

Digilent Genesys2 (SS with add-on board) Kintex 7 ULPI (TUSB1210),
FMC for PIPE
(TUSB1310A) add-
on boards

High/Super-Speed
Fully Supported

2.2. Support for Host Mode 7

LUNA

8 Chapter 2. Status & Support

CHAPTER

THREE

GETTING STARTED

3.1 Setting up a Build Environment

This guide highlights the installation / setup process for the luna gateware library. It focuses on getting the Python
module (and prerequisites) up and running.

3.1.1 Prerequisites

• Python 3.7, or later.

• A working FPGA toolchain. We only officially support a toolchain composed of the Project Trellis ECP5 tools,
the yosys synthesis suite, and the NextPNR place-and-route tool. All of these tools must be built from master.

• A working installation of Amaranth HDL.

3.1.2 Installation

Currently, the LUNA library is considered a “work-in-progress”; and thus it’s assumed you’ll want to use a local copy
of LUNA for development.

The easiest way to set this up is to install the distribution in your working environment. From the root of the repository:

Install a copy of our local tools.
pip install .

Alternatively: install all dependencies,
including optional development packages (required for running applets and examples).
pip install .[dev]

If you want to install LUNA to your machine globally (not recommended), you can do so using the following single
command:

Create a LUNA package, and install it.
pip install . --user

9

https://github.com/YosysHQ/prjtrellis
https://github.com/YosysHQ/yosys
https://github.com/YosysHQ/nextpnr
https://github.com/amaranth-lang/amaranth

LUNA

3.1.3 Testing

The easiest way to test your installation is to build one of the test applets. These applets are just Python scripts that
construct and program gateware using Amaranth HDL; so they can be run like any other script:

With GSG or self-built LUNA hardware connected; we can run the full test,
and test both our installation and the attached hardware.
python applets/interactive-test.py

Without LUNA hardware connected, we'll only build the applet, to exercise
our toolchain.
python applets/interactive-test.py --dry-run

3.1.4 The apollo utility.

The luna distribution depends on apollo, which includes a utility that can be used to perform various simple functions
useful in development; including simple JTAG operations, SVF playback, manipulating the board’s flash, and debug
comms.

$ apollo
usage: apollo [-h] command: [[argument]] [[value]]

Utility for LUNA development via an onboard Debug Controller.

positional arguments:
command: info -- Prints information about any connected LUNA-compatible boards

configure -- Uploads a bitstream to the device's FPGA over JTAG.
erase -- Clears the attached board's configuration flash.
program -- Programs the target bitstream onto the attached FPGA.
jtag-scan -- Prints information about devices on the onboard JTAG chain.
flash-scan -- Attempts to detect any attached configuration flashes.
svf -- Plays a given SVF file over JTAG.
spi -- Sends the given list of bytes over debug-SPI, and returns␣

→˓the response.
spi-inv -- Sends the given list of bytes over SPI with inverted CS.
spi-reg -- Reads or writes to a provided register over the debug-SPI.

[argument] the argument to the given command; often a filename
[value] the value to a register write command

To have easy access to the apollo command, you’ll need to ensure that your python binary directory is in your PATH.
For macOS/Linux, this often means adding ~/.local/bin to your PATH.

10 Chapter 3. Getting Started

CHAPTER

FOUR

LUNA ON YOUR OWN HARDWARE

The LUNA stack is designed to be easy to use on your own FPGA hardware – if you can already run Amaranth designs
on your board, all you’ll need is to set up some I/O definitions and some clock domains.

The exact platform requirements depend on how you’ll perform USB interfacing, and are detailed below.

4.1 High-Speed via a ULPI PHY

Using a ULPI PHY is relatively straightforward; and typically requires no hardware beyond the ULPI PHY. LUNA
works with both designs that receive their usb-domain clocks from the PHY (typical) and designs that provide a 60MHz
clock to their PHY.

The following clock domains are required:

Domain
Name

Frequency Description

usb 60 MHz Core clock for the PHY’s clock domain. Can be provided to the FPGA by the PHY,
or provided to the PHY by the FPGA. See below.

An I/O resource with the following subsignals is required:

Sub-
signal
Name

Width Direction Description

clk 1 input or
output

The ULPI bus clock. Should be configured as an input if the PHY is provid-
ing our clock (typical), or as an output if the FPGA will provide the clock to
the PHY.

data 8 bidirec-
tional

The bidirectional data bus.

dir 1 input The ULPI direction signal.
nxt 1 input The ULPI next signal.
stp 1 output The ULPI stop signal.
rst 1 output The ULPI reset signal. The gateware asserts this signal when the PHY

should be reset; if the PHY requires an active-low reset, this can be inverted
with PinsN.

An example resource might look like:

11

LUNA

Targeting the USB3300 PHY, which provides our clock.
Resource("ulpi", 0,

Subsignal("data", Pins(data_sites, dir="io")),
Subsignal("clk", Pins(clk_site, dir="i")),
Subsignal("dir", Pins(dir_site, dir="i")),
Subsignal("nxt", Pins(nxt_site, dir="i")),
Subsignal("stp", Pins(stp_site, dir="o")),
Subsignal("rst", Pins(reset_site, dir="o")),
Attrs(IO_TYPE="LVCMOS33")

)

4.2 Full-Speed using FPGA I/O

LUNA provides a gateware PHY that enables an FPGA to communicate at Full Speed using only FPGA 3V3 I/O and
a pull-up resistor. The FPGA must be able to provide stable 48 MHz and 12 MHz clocks.

The following clock domains are required:

Domain
Name

Frequency Description

usb 12 MHz Core clock for USB data. Ticks at the USB bitrate of 12MHz, and drives most of
the USB logic.

usb_io 48 MHz Edge clock for the USB I/O. Used at the I/O boundary for clock recovery and NRZI
encoding.

An I/O resource with the following subsignals is required:

Sub-
signal
Name

Width Direction Description

d_p 1 bidirec-
tional

The raw USB D+ line; must be on a 3.3V logic bank.

d_n 1 bidirec-
tional

The raw USB D- line; must be on a 3.3V logic bank.

pullup 1 output Control for the USB pull-up resistor; should be connected to D+ via a 1.5k
resistor.

vbus_valid1 input Optional. If provided, this signal will be used for VBUS detection logic;
should be asserted whenever VBUS is present. Many devices are “bus-
powered” (receive their power from USB), and thus have no need for VBUS
detection, in which case this signal can be omitted.

An example resource might look like:

Resource("usb", 0,
Subsignal("d_p", Pins("A4")),
Subsignal("d_n", Pins("A2")),
Subsignal("pullup", Pins("D5", dir="o")),
Attrs(IO_STANDARD="SB_LVCMOS"),

),

12 Chapter 4. LUNA On Your Own Hardware

CHAPTER

FIVE

CORE USB 2.0 DEVICE GATEWARE

The LUNA gateware library provides a flexible base USB Device model, which is designed to provide the basis for
creating both application-specific and general-purpose USB hardware.

USB devices are created using two core components:

• A USBDevice instance, which provides hardware that handles low-level USB communications, and which is
designed to be applicable to all devices; and

• One or more endpoint interfaces, which handle high-level USB communications – and provide the logic the
tailors the device to its intended application.

The USBDevice communicates with low-level transciever hardware via the FPGA-friendly USB Transceiver Macrocell
Interface (UTMI). Translators can be used to transparently adapt the FPGA interface to other common bus formats;
including the common ULPI low-pin-count variant of UTMI.

Fig. 1: The overall architecture of a LUNA USB 2.0 device, highlighting the USBDevice components, their connections
to the endpoint interfaces, and optional bus translator.

5.1 Conceptual Components

The USBDevice class contains the low-level communications hardware necessary to implement a USB device; includ-
ing hardware for maintaining device state, detecting events, reading data from the host, and generating responses.

5.1.1 Token Detector

The Token Detector detects token packets from the host; and is responsible for:

• Detecting start of frame packets, which are used to maintain consistent timing across USB devices.

• Detecting the start of USB transactions.

• Identifying the device and endpoint to which each transaction is addressed.

As each USB transaction starts with a token packet; it is implicitly the Token Detector’s responsiblity to notify endpoint
interfaces of imminent incoming data (OUT transactions) and requests for data (IN transactions).

13

LUNA

5.1.2 Handshake Detector

The Handshake Detector detects handshake packets from the host; and is responsible for identifying the host’s response
to packets from the device – indicating whether the host successfully received a packet sent from the device.

5.1.3 Data Packet Receiver

The Data Packet Receiver is responsible for receiving data packets from the device – including the payloads of both
OUT and SETUP transactions – and translating them to a simple data stream.

The Data Receiver handles error detection; and thus validates the checksums of each packet using the Data CRC Unit.

5.1.4 Device State Manager

The Device State Manager is responsible for storing global device state – primarily, the device’s current address and
configuration. The device state manager accepts changes to the device’s address/configuration from each endpoint
interface; and automatically resets the relevant parameters when a USB reset is received.

5.1.5 Handshake Generator

The Handshake Generator provides a simple, strobe-based interface that allows endpoints to easily emit handshake
packets – allowing the device to acknowledge packets (ACK), issue stalls (STALL) , and to rate limit communications
(NAK/NYET).

5.1.6 Data Packet Transmitter

The Data Packet Generator is responsible for generating outgoing USB packets from simple data streams; including
emitting data packet IDs, sending data, and appending data CRCs. This class automatically appends the required data
CRC-16s.

5.1.7 Data CRC Unit

The Data CRC Unit is shared among the packet receiver and packet generator; and handles computing the CRC-16 for
USB data streams.

5.1.8 Interpacket Timer

The Interpacket Timer is responsible for maintaining maximum and minimum interpacket delays; ensuring that the
device can correctly provide bus turnover times; and knows the window in which handshake packets are expected to
arrive.

14 Chapter 5. Core USB 2.0 Device Gateware

LUNA

5.1.9 Reset/Suspend Sequencer

The Reset/Suspend Sequencer is responsible for detecing USB reset and suspend events; and where applicable, partic-
ipating in the USB reset protocol’s high-speed detection handshake.

The sequencer:

• Detects USB resets; and communicates to the Device State Manager that it should return the device to an un-
addressed, un-configured state.

• Performs the high speed detection handshake, which allows the device to switch to High Speed operation; and
thus is necessary for the device to operate at high speed.

• Manages the high-speed terminations; as part of the reset-handshake and suspend protocols.

• Detects the periods of inactivity that indicate the device is being suspended; and automatically disengages high-
speed terminations while the device is in suspend.

5.2 usb2.device Components

Contains the organizing hardware used to add USB Device functionality to your own designs; including the core
USBDevice class.

class luna.gateware.usb.usb2.device.USBDevice(*args, src_loc_at=0, **kwargs)
Bases: Elaboratable

Core gateware common to all LUNA USB2 devices.

The USBDevicemodule contains the low-level communications hardware necessary to implement a USB device;
including hardware for maintaining device state, detecting events, reading data from the host, and generating
responses.

This class can be instantiated directly, and used to build a USB device, or can be subclassed to create custom
device types.

To configure a USBDevice from a CPU or other wishbone master, see USBDeviceController; which can easily
be attached using its attach method.

Parameters
• bus ([UTMI interface, ULPI Interface]) – The UTMI or ULPI PHY connection to

be used for communications.

• handle_clocking (bool, Optional) – True iff we should attempt to connect up the usb
clock domain to the PHY automatically based on the clk signals’s I/O direction. This option
may not work for non-simple connections; in which case you will need to connect the clock
signal yourself.

connect

Held high to keep the current USB device connected; or held low to disconnect.

Type
Signal(), input

low_speed_only

If high, the device will operate at low speed.

Type
Signal(), input

5.2. usb2.device Components 15

LUNA

full_speed_only

If high, the device will be prohibited from operating at high speed.

Type
Signal(), input

frame_number

The current USB frame number.

Type
Signal(11), output

microframe_number

The current USB microframe number. Always 0 on non-HS connections.

Type
Signal(3), output

sof_detected

Pulses for one cycle each time a SOF is detected; and thus our frame number has changed.

Type
Signal(), output

new_frame

Strobe that indicates a new frame (not microframe) is detected.

Type
Signal(), output

reset_detected

Asserted when the USB device receives a bus reset.

Type
Signal(), output

State signals.

suspended

High when the device is in USB suspend. This can be (and by the spec must be) used to trigger the device
to enter lower-power states.

Type
Signal(), output

tx_activity_led

Signal that can be used to drive an activity LED for TX.

Type
Signal(), output

rx_activity_led

Signal that can be used to drive an activity LED for RX.

Type
Signal(), output

add_control_endpoint()

Adds a basic control endpoint to the device.

Does not add any request handlers. If you want standard request handlers;
add_standard_control_endpoint automatically adds standard request handlers.

16 Chapter 5. Core USB 2.0 Device Gateware

LUNA

Return type
Returns the endpoint object for the control endpoint.

add_endpoint(endpoint)
Adds an endpoint interface to the device.

Parameters
endpoint (Elaborateable) – The endpoint interface to be added. Can be any piece of
gateware with a EndpointInterface attribute called interface.

add_standard_control_endpoint(descriptors: DeviceDescriptorCollection, **kwargs)
Adds a control endpoint with standard request handlers to the device.

Parameters will be passed on to StandardRequestHandler.

5.2.1 Return value

The endpoint object created.

5.3 usb2.packet Components

Contains the gatware module necessary to interpret and generate low-level USB packets.

class luna.gateware.usb.usb2.packet.DataCRCInterface

Bases: Record

Record providing an interface to a USB CRC-16 generator.

start

Strobe that indicates that a new CRC computation should be started.

Type
Signal(), input to CRC generator

crc

The current CRC-16 value; updated with each sent or received byte.

Type
Signal(), output from CRC generator

class luna.gateware.usb.usb2.packet.HandshakeExchangeInterface(*, is_detector)
Bases: Record

Record that carries handshakes detected -or- generated between modules.

ack

When connected to a generator, pulsing this strobe will trigger generating of an ACK. When connected to
a detector, this strobe will be pulsed when an ACK is detected from the host.

Type
Signal()

nak

When connected to a generator, pulsing this strobe will trigger generating of an NAK. When connected to
a detector, this strobe will be pulsed when an NAK is detected from the host.

Type
Signal()

5.3. usb2.packet Components 17

LUNA

stall

When connected to a generator, pulsing this strobe will trigger generation of a STALL. Unused in a detector,
currently.

Type
Signal()

nyet

When connected to a generator, pulsing this strobe will trigger generation of a NYET. Unused in a detector,
currently.

Type
Signal()

Parameters
is_detector (bool) – If true, this will be considered an interface to a detector that identifies
handshakes. Otherwise, this will be considered an interface to a generator that accepts handshake
requests.

class luna.gateware.usb.usb2.packet.InterpacketTimerInterface

Bases: Record

Record providing an interface to our interpacket timer.

See [USB2.0: 7.1.18] and the USBInterpacketTimer gateware for more information.

start

Strobe that indicates when the timer should be started. Usually started at the end of an Rx or Tx event.

Type
Signal(), input to timer

tx_allowed

Strobe that goes high when it’s safe to transmit after an Rx event.

Type
Signal(), output from timer

tx_timeout

Strobe that goes high when the transmit-after-receive window has passed.

Type
Signal(), output from timer

rx_timeout

Strobe that goes high when the receive-after-transmit window has passed.

Type
Signal(), output from timer

attach(*subordinates)
Attaches subordinate interfaces to the given timer interface.

Parameters
subordinates ([InterpacketTimerInterface, Signal]) – Each
InterpacketTimerInterface is provided will be fully connected to a given timer
interface. Each Signal provided will be interpreted as a timer reset, and added to the list of
all resets.

18 Chapter 5. Core USB 2.0 Device Gateware

LUNA

class luna.gateware.usb.usb2.packet.TokenDetectorInterface

Bases: Record

Record providing an interface to a USB token detector.

pid

The Packet ID of the most recent token.

Type
Signal(4), detector output

address

The address associated with the relevant token.

Type
Signal(7), detector output

endpoint

The endpoint indicated by the most recent token.

Type
Signal(4), detector output

new_token

Strobe asserted for a single cycle when a new token packet has been received.

Type
Signal(), detector output

ready_for_response

Strobe asserted for a single cycle one inter-packet delay after a token packet is complete. Indicates when
the token packet can be responded to.

Type
Signal(), detector output

frame

The current USB frame number.

Type
Signal(11), detector output

new_frame

Strobe asserted for a single cycle when a new SOF has been received.

Type
Signal(), detector output

is_in

High iff the current token is an IN.

Type
Signal(), detector output

is_out

High iff the current token is an OUT.

Type
Signal(), detector output

5.3. usb2.packet Components 19

LUNA

is_setup

High iff the current token is a SETUP.

Type
Signal(), detector output

is_ping

High iff the current token is a PING.

Type
Signal(), detector output

class luna.gateware.usb.usb2.packet.USBDataPacketCRC(*args, src_loc_at=0, **kwargs)
Bases: Elaboratable

Gateware that computes a running CRC-16.

By default, this module has no connections to the modules that use it.

These are added using add_interface; this module supports an arbitrary number of connection interfaces; see
add_interface() for restrictions.

rx_data

Receive data input; can be carried directly from a UTMI interface.

Type
Signal(8), input

rx_valid

Receive validity signal; can be carried directly from a UTMI interface.

Type
Signal(), input

tx_data

Transmit data input; can be carried directly from a UTMI interface.

Type
Signal(8), input

tx_valid

When high, the tx_data input is used to update the CRC.

Type
Signal(), input

Parameters
initial_value ([int, Const]) – The initial value of the CRC shift register; the USB default
is used if not provided.

add_interface(interface: DataCRCInterface)
Adds an interface to the CRC generator module.

Each interface can reset the CRC; and can read the current CRC value. No arbitration is performed; it’s
assumed that no more than one interface will be computing a running CRC at at time.

Parameters
interface (DataCRCInterface) – The interface to be added; accepts control signals from
other modules, and brings CRC output to them. This method can be called multiple times to
generate multiplpe CRCs.

20 Chapter 5. Core USB 2.0 Device Gateware

LUNA

class luna.gateware.usb.usb2.packet.USBDataPacketDeserializer(*args, src_loc_at=0, **kwargs)
Bases: Elaboratable

Gateware that captures USB data packet contents and parallelizes them.

data_crc

Connection to the CRC generator.

Type
DataCRCInterface

new_packet

Strobe that pulses high for a single cycle when a new packet is delivered.

Type
Signal(), output

packet_id

The packet ID of the captured PID.

Type
Signal(4), output

packet

Packet data for a the most recently received packet.

Type
Signal(max_packet_size), output

length

The length of the packet data presented on the packet[] output.

Type
Signal(range(0, max_packet_length +1)), output

Parameters
• utmi (UTMIInterface, or equivalent) – The UTMI bus to observe.

• max_packet_size (int) – The maximum packet (payload) size to be deserialized, in bytes.

• create_crc_generator (bool) – If True, a submodule CRC generator will be created.
Excellent for testing.

class luna.gateware.usb.usb2.packet.USBDataPacketGenerator(*args, src_loc_at=0, **kwargs)
Bases: Elaboratable

Module that converts a FIFO-style stream into a USB data packet.

Handles steps such as PID generation and CRC-16 injection.

As a special case, if the stream pulses last (with valid=1) without pulsing first, we’ll send a zero-length packet.

data_pid

The data packet number to use. The potential PIDS are: 0 = DATA0, 1 = DATA1, 2 = DATA2, 3 = MDATA;
the interface is designed so that most endpoints can tie the MSb to zero and then perform PID toggling by
toggling the LSb.

Type
Signal(2), input

5.3. usb2.packet Components 21

LUNA

crc

Interface to our data CRC generator.

Type
DataCRCInterface

stream

Stream input for the raw data to be transmitted.

Type
USBInStreamInterface

tx

UTMI-subset transmit interface

Type
UTMITransmitInterface

Parameters
standalone (bool) – If True, this unit will include its internal CRC generator. Perfect for unit
testing or debugging.

class luna.gateware.usb.usb2.packet.USBDataPacketReceiver(*args, src_loc_at=0, **kwargs)
Bases: Elaboratable

Gateware that converts received USB data packets into a data-stream packets.

It’s important to note that packet payloads are mostly directly carried over from UTMI. Since USB data is re-
ceived -prior- to its CRC, one cannot know if a packet is valid until after it has been compeltely received. As a
result, this interface will generate data of unknown validity, followed by a strobe on either packet_complete or
crc_mismatch . The receiving interface must be prepared to handle crc_mismatch by discarding the received
data.

data_crc

Connection to the CRC generator.

Type
DataCRCInterface

timer

Connection to our interpacket timer.

Type
InterpacketTimerInterface

stream

Stream that carries captured packet data.

Type
USBOutDataStream, output

active_pid

The PID of the data currently being received.

Type
Signal(4), output

packet_id

The packet ID of the most recently captured PID. Becomes valid simultaneous to a strobe on
packet_complete or crc_mismatch .

22 Chapter 5. Core USB 2.0 Device Gateware

LUNA

Type
Signal(4), output

packet_complete

Strobe that pulses high when a new packet is delivered with a valid CRC.

Type
Signal(), output

crc_mismatch

Strobe that pulses high when the given packet has a CRC mismatch; and thus the data received this far
should be discarded.

Type
Signal(), output

ready_for_response

Strobe that indicates that an inter-packet delay has passed since packet_complete, and thus we’re now
ready to respond with a handshake.

Type
Signal(), output

Parameters
• utmi (UTMIInterface, or equivalent) – The UTMI bus to observe.

• max_packet_size (int) – The maximum packet (payload) size to be deserialized, in bytes.

• standalone (bool) – Debug value. If True, a submodule CRC generator will be created.

• speed (USBSpeed) – USBSpeed signal or constant that specifies our speed in standalone
mode.

class luna.gateware.usb.usb2.packet.USBHandshakeDetector(*args, src_loc_at=0, **kwargs)
Bases: Elaboratable

Gateware that detects handshake packets.

detected

Strobes that indicate which handshakes we’re detecting.

Type
HandshakeExchangeInterface

Parameters
utmi ([UTMIInterface, UTMITranslator]) – The UTMI interface to listen on.

ACK_PID = 2

NAK_PID = 10

NYET_PID = 6

STALL_PID = 14

5.3. usb2.packet Components 23

LUNA

class luna.gateware.usb.usb2.packet.USBHandshakeGenerator(*args, src_loc_at=0, **kwargs)
Bases: Elaboratable

Module that generates handshake packets, on request.

Attributes:

issue_ack: Signal(), input
Pulsed to generate an ACK handshake packet.

issue_nak: Signal(), input
Pulsed to generate a NAK handshake packet.

issue_stall: Signal(), input
Pulsed to generate a STALL handshake.

tx: UTMITransmitInterface
Interface to the relevant UTMI interface.

class luna.gateware.usb.usb2.packet.USBInterpacketTimer(*args, src_loc_at=0, **kwargs)
Bases: Elaboratable

Module that tracks inter-packet timings, enforcing spec-mandated packet gaps.

Ports other than speed are added dynamically via :method:add_interface`.

speed

The device’s current operating speed. Should be a USBSpeed enumeration value – 0 for high, 1 for full, 2
for low.

Type
Signal(2), input

add_interface(interface: InterpacketTimerInterface)
Adds a connection to a user of this module.

This module performs no multiplexing; it’s assumed only one interface will be active at a time.

Parameters
interface (InterpacketTimerInterface) – The InterPacketTimer interface to add to
our module.

class luna.gateware.usb.usb2.packet.USBTokenDetector(*args, src_loc_at=0, **kwargs)
Bases: Elaboratable

Gateware that parses token packets and generates relevant events.

interface

The interface that contains token detection events, and information about detected tokens.

Type
TokenDetectorInterface

speed

Carries a USBSpeed constant identifying the device’s current operating speed.

Type
Signal(2), input

address

If :parameter:filter_by_address is true, this is an input that filters our event detector so it only reports
tokens directed at a given address. If filter_by_address is false, this is an output that contains the
address of the most recent token.

24 Chapter 5. Core USB 2.0 Device Gateware

LUNA

Type
Signal(7), input -or- output

Parameters
• utmi (UTMIInterface) – The UTMI bus to observe.

• filter_by_address (bool) – If true, this detector will only report events for the address
supplied in the address[] field.

SOF_PID = 5

TOKEN_SUFFIX = 1

5.4 usb2.reset Components

Gateware that handles USB bus resets & speed detection.

class luna.gateware.usb.usb2.reset.USBResetSequencer(*args, src_loc_at=0, **kwargs)
Bases: Elaboratable

Gateware that detects reset signaling on the USB bus.

low_speed_only

If set, the device will be forced to operate as a low-speed device.

Type
Signal(), input

prevent_high_speed

If set, the device will be prohibited from entering high-speed states; and will thus act like it’s a full speed
device (low_speed_only = 0).

Type
Signal(), input

bus_busy

Hold-off signal that indicates that driving the bus should be delayed.

Type
Signal(), input

vbus_connected

Indicates that the device is connected to VBUS. When this is de-asserted, the device will be held in perpetual
bus reset, and reset handshaking will be disabled.

Type
Signal(), input

line_state

The UTMI linestate signals; used to read the current state of the USB D+ and D- lines.

Type
Signal(2), input

5.4. usb2.reset Components 25

LUNA

bus_reset

Strobe; pulses high for one cycle when a bus reset is detected. This signal indicates that the
device should return to unaddressed, unconfigured, and should not longer be in High Speed mode.

Type
Signal(), output

suspended

Held high while the USB device should be in suspend. This technically indicates that the device should drop
down to consuming suspend current (<= 2.5mA), but very few devices are compliant with this requirement.
Either way, a polite device might reduce its power consumption while in suspend.

Type
Signal(), output

current_speed

A USBSpeed value that indicates the current operating speed. Used both to drive our device’s knowledge
of operating speed and to drive our PHY’s speed selection.

Type
Signal(2), output

operating_mode

The current UTMI operating mode. Used to select whether we’re driving the USB bus directly; or whether
we’re letting the PHY handle NRZI/bit-stuffing.

Type
Signal(2), output

termination_select

Determines the bus termination mode. In LS/FS, this determines the presence of our presence-detect pull-
up. In HS mode, this determines whether the USB high-speed termination is present (0), or whether we’re
in chirp mode (1).

Type
Signal(), output, default=1

tx

– Our UTMI transmit interface; used to drive chirp signaling onto the bus.

Type
UTMITransmitInterface, output stream

26 Chapter 5. Core USB 2.0 Device Gateware

CHAPTER

SIX

GATEWARE ENDPOINT INTERFACES

The LUNA architecture separates gateware into two distinct groups: the core device, responsible for the low-level
communications common to all devices, and endpoint interfaces, which perform high-level communications, and which
are often responsible for tailoring each device for its intended application:

Every useful LUNA device features at least one endpoint interface capable of at least handling enumeration. Many
devices will provide multiple endpoint interfaces – often one for each endpoint – but this is not a requirement. Incoming
token, data, and handshake packets are routed to all endpoint interfaces; it is up to each endpoint interface to decide
which packets to respond to.

Note: terms like “interface” are overloaded: the single term “interface” can refer both to hardware in-
terfaces and to the USB concept of an Interface. The “interface” in “endpoint interface” is an instance
of the former; they are conceptually distinct from USB interfaces. To reduce conflation, we’ll use the full
phrase “endpoint interface” in this document.

As a single endpoint interface may handle packets for multiple endpoints; it is entirely possible to have a device that
talks on multiple endpoints, but which uses only one endpoint interface.

6.1 Exclusivity

A LUNA USBDevice performs no arbitration – if two endpoint interfaces attempt to transmit at the same time, the result
is undefined; and often will result in undesirable output. Accordingly, it’s important to ensure a “clear delineation of
responsibility” across endpoint interfaces. This is often accomplished by ensuring only one endpoint interface handles
a given endpoint or request type.

6.2 usb2.endpoint Components

Gateware for working with abstract endpoints.

class luna.gateware.usb.usb2.endpoint.EndpointInterface

Bases: object

Interface that connects a USB endpoint module to a USB device.

Many non-control endpoints won’t need to use the latter half of this structure; it will be automatically removed
by the relevant synthesis tool.

tokenizer

Interface to our TokenDetector; notifies us of USB tokens.

27

LUNA

Type
TokenDetectorInterface, to detector

rx

Receive interface for this endpoint.

Type
USBOutStreamInterface, input stream to endpoint

rx_complete

Strobe that indicates that the concluding rx-stream was valid (CRC check passed).

Type
Signal(), input to endpoint

rx_ready_for_response

Strobe that indicates that we’re ready to respond to a complete transmission. Indicates that an interpacket
delay has passed after an rx_complete strobe.

Type
Signal(), input to endpoint

rx_invalid

Strobe that indicates that the concluding rx-stream was invalid (CRC check failed).

Type
Signal(), input to endpoint

rx_pid_toggle

Value for the data PID toggle; 0 indicates we’re receiving a DATA0; 1 indicates Data1.

Type
Signal(), input to endpoint

tx

Transmit interface for this endpoint.

Type
USBInStreamInterface, output stream from endpoint

tx_pid_toggle

Value for the data PID toggle; 0 indicates we’ll send DATA0; 1 indicates DATA1. 2 indicates we’ll send
DATA2, while 3 indicates we’ll send DATAM.

Type
Signal(2), output from endpoint

handshakes_in

Carries handshakes detected from the host.

Type
HandshakeExchangeInterface, input to endpoint

handshakes_out

Carries handshakes generate by this endpoint.

Type
HandshakeExchangeInterface, output from endpoint

28 Chapter 6. Gateware Endpoint Interfaces

LUNA

speed

The device’s current operating speed. Should be a USBSpeed enumeration value – 0 for high, 1 for full, 2
for low.

Type
Signal(2), input to endpoint

active_address

Contains the device’s current address.

Type
Signal(7), input to endpoint

address_changed

Strobe; pulses high when the device’s address should be changed.

Type
Signal(), output from endpoint.

new_address

When address_changed is high, this field contains the address that should be adopted.

Type
Signal(7), output from endpoint

active_config

The configuration number of the active configuration.

Type
Signal(8), input to endpoint

config_changed

Strobe; pulses high when the device’s configuration should be changed.

Type
Signal(), output from endpoint

new_config

When config_changed is high, this field contains the configuration that should be applied.

Type
Signal(8)

timer

Interface to our interpacket timer.

Type
InterpacketTimerInterface

data_crc

Control connection for our data-CRC unit.

Type
DataCRCInterface

class luna.gateware.usb.usb2.endpoint.USBEndpointMultiplexer(*args, src_loc_at=0, **kwargs)
Bases: Elaboratable

Multiplexes access to the resources shared between multiple endpoint interfaces.

Interfaces are added using add_interface.

6.2. usb2.endpoint Components 29

LUNA

shared

The post-multiplexer endpoint interface.

Type
EndpointInterface

add_interface(interface: EndpointInterface)
Adds a EndpointInterface to the multiplexer.

Arbitration is not performed; it’s expected only one endpoint will be driving the transmit lines at a time.

or_join_interface_signals(m, signal_for_interface)
Joins together a set of signals on each interface by OR’ing the signals together.

6.3 Provided Endpoint Interfaces

The LUNA library ships with a few provided endpoint interfaces. These include:

• The USBControlEndpoint, which provides gateware that facilitates handling USB control requests. To handle
requests via this endpoint, the user attaches one or more request handlers interfaces; which are documented in
their own section.

• The FIFOInterface classes, which implement simple, FIFO-based software interfaces. These lightweight inter-
faces are meant to allow simple CPU control over one or more endpoints. These are based off of the ValentyUSB
eptri interface; and will eventually be binary-compatible with existing eptri code.

6.4 usb2.control Components

Low-level USB transciever gateware – control transfer components.

class luna.gateware.usb.usb2.control.USBControlEndpoint(*args, src_loc_at=0, **kwargs)
Bases: Elaboratable

Gateware that manages control request data progression.

This class is used by creating one or more request handler modules; which define how requests are handled.
These handlers can be bound using add_request_handler.

For convenience, this module can also automatically be populated with a StandardRequestHandler via the
add_standard_request_handlers.

interface

The interface from this endpoint to the core device hardware.

Type
EndpointInterface

Parameters
• utmi (UTMI bus, or equivalent translator) – The UTMI bus we’ll monitor for data.

We’ll consider this read-only.

• endpoint_number (int, optional) – The endpoint number for this control interface;
defaults to (and almost always should be) zero.

30 Chapter 6. Gateware Endpoint Interfaces

LUNA

• standalone (bool) – Debug parameter. If true, this module will operate without external
components; i.e. without an internal data-CRC generator, or tokenizer. In this case, tokenizer
and timer should be set to None; and will be ignored.

add_request_handler(request_handler)
Adds a ControlRequestHandler module to this control endpoint.

No arbitration is performed between request handlers; so it’s important that request handlers not overlap in
the requests they handle.

add_standard_request_handlers(descriptors: DeviceDescriptorCollection, **kwargs)
Adds a handlers for the standard USB requests.

This will handle all Standard-type requests; so any additional request handlers must not handle Standard
requests.

Parameters will be passed on to StandardRequestHandler.

6.5 usb2.interfaces.eptri Components

6.6 Bulk Endpoint Helpers / usb2.endpoints.stream Components

Endpoint interfaces for working with streams.

The endpoint interfaces in this module provide endpoint interfaces suitable for connecting streams to USB endpoints.

class luna.gateware.usb.usb2.endpoints.stream.USBMultibyteStreamInEndpoint(*args,
src_loc_at=0,
**kwargs)

Bases: Elaboratable

Endpoint interface that transmits a simple data stream to a host.

This interface is suitable for a single bulk or interrupt endpoint.

This variant accepts streams with payload sizes that are a multiple of one byte; data is always transmitted to the
host in little-endian byte order.

This endpoint interface will automatically generate ZLPs when a stream packet would end without a short data
packet. If the stream’s last signal is tied to zero, then a continuous stream of maximum-length-packets will be
sent with no inserted ZLPs.

This implementation is double buffered; and can store a single packets worth of data while transmitting a second
packet.

stream

Full-featured stream interface that carries the data we’ll transmit to the host.

Type
StreamInterface, input stream

interface

Communications link to our USB device.

Type
EndpointInterface

Parameters

6.5. usb2.interfaces.eptri Components 31

LUNA

• byte_width (int) – The number of bytes to be accepted at once.

• endpoint_number (int) – The endpoint number (not address) this endpoint should respond
to.

• max_packet_size (int) – The maximum packet size for this endpoint. Should match the
wMaxPacketSize provided in the USB endpoint descriptor.

class luna.gateware.usb.usb2.endpoints.stream.USBStreamInEndpoint(*args, src_loc_at=0,
**kwargs)

Bases: Elaboratable

Endpoint interface that transmits a simple data stream to a host.

This interface is suitable for a single bulk or interrupt endpoint.

This endpoint interface will automatically generate ZLPs when a stream packet would end without a short data
packet. If the stream’s last signal is tied to zero, then a continuous stream of maximum-length-packets will be
sent with no inserted ZLPs.

The flush input may be asserted to to cause all pending data to be transmitted as soon as possible. When flush
is asserted, packets of varying length will be sent as needed, according to the data available.

This implementation is double buffered; and can store a single packets worth of data while transmitting a second
packet.

stream

Full-featured stream interface that carries the data we’ll transmit to the host.

Type
StreamInterface, input stream

flush

Assert to cause all pending data to be transmitted as soon as possible.

Type
Signal(), input

discard

Assert to cause all pending data to be discarded.

Type
Signal(), input

interface

Communications link to our USB device.

Type
EndpointInterface

Parameters
• endpoint_number (int) – The endpoint number (not address) this endpoint should respond

to.

• max_packet_size (int) – The maximum packet size for this endpoint. Should match the
wMaxPacketSize provided in the USB endpoint descriptor.

32 Chapter 6. Gateware Endpoint Interfaces

LUNA

class luna.gateware.usb.usb2.endpoints.stream.USBStreamOutEndpoint(*args, src_loc_at=0,
**kwargs)

Bases: Elaboratable

Endpoint interface that receives data from the host, and produces a simple data stream.

This interface is suitable for a single bulk or interrupt endpoint.

stream

Full-featured stream interface that carries the data we’ve received from the host.

Type
StreamInterface, output stream

interface

Communications link to our USB device.

Type
EndpointInterface

Parameters
• endpoint_number (int) – The endpoint number (not address) this endpoint should respond

to.

• max_packet_size (int) – The maximum packet size for this endpoint. If this there isn’t
max_packet_size space in the endpoint buffer, this endpoint will NAK (or participate in the
PING protocol.)

• buffer_size (int, optional) – The total amount of data we’ll keep in the buffer; typi-
cally two max-packet-sizes or more. Defaults to twice the maximum packet size.

6.7 Interrupt Endpoint Helpers / usb2.endpoints.status Components

Endpoint interfaces for providing status updates to the host.

These are mainly meant for use with interrupt endpoints; and allow a host to e.g. repeatedly poll a device for status.

class luna.gateware.usb.usb2.endpoints.status.USBSignalInEndpoint(*args, src_loc_at=0,
**kwargs)

Bases: Elaboratable

Endpoint that transmits the value of a signal to a host whenever polled.

This is intended to be usable to implement a simple interrupt endpoint that polls for a status signal.

signal

The signal to be relayed to the host. This signal’s current value will be relayed each time the host polls our
endpoint.

Type
Signal(<variable width>), input

interface

Communications link to our USB device.

Type
EndpointInterface

6.7. Interrupt Endpoint Helpers / usb2.endpoints.status Components 33

LUNA

status_read_complete

Strobe that pulses high for a single usb-domain cycle each time a status read is complete.

Type
Signal(), output

Parameters
• width (int) – The width of the signal we’ll relay up to the host, in bits.

• endpoint_number (int) – The endpoint number (not address) this endpoint should respond
to.

• endianness (str, "big" or "little", optional) – The endianness with which to
send the data. Defaults to little endian.

• signal_domain (str, optional) – The name of the domain :attr:signal is clocked from.
If this value is anything other than “usb”, the signal will automatically be synchronized to
the USB clock domain.

34 Chapter 6. Gateware Endpoint Interfaces

CHAPTER

SEVEN

SELF-MADE HARDWARE BRINGUP

This guide is intended to help you bring up a LUNA board you’ve built yourself. If you’ve received your board from
Great Scott Gadgets, it should already be set up, and you shouldn’t need to follow these steps.

7.1 Prerequisites

• A LUNA board with a populated Debug Controller microprocessor. This is the SAMD microcontroller located
in the Debug section at the bottom of the board. When powering the board, the test points should have the marked
voltages. The FPGA LEDs might be dimly lit.

• A programmer capable of uploading firmware via SWD. Examples include the Black Magic Probe; the Segger
J-Link, and many OpenOCD compatible boards.

• A toolchain capable of building binaries for Cortex-M0 processors, such as the GNU Arm Embedded toolchain.
If you’re using Linux or macOS, you’ll likely want to fetch this using a package manager; a suitable toolchain
may be called something like arm-none-eabi-gcc.

• A DFU programming utility, such as dfu-util.

7.2 Bring-up Process

The high-level process for bringing up your board is as follows:

1. Compile and upload the Saturn-V bootloader, which allows Debug Controller to program itself.

2. Compile and upload the Apollo Debug Controller firmware, which allows FPGA configuration & flashing; and
provides debug interfaces for working with the FPGA.

3. Install the luna tools, and run through the self-test procedures to validate that your board is working.

7.3 Build/upload Saturn-V

The “recovery mode (RVM)” bootloader for LUNA boards is named Saturn-V ; as it’s the first stage in “getting to
LUNA”. The bootloader is located in [in its own repository](https://github.com/greatscottgadgets/saturn-v).

You can clone the bootloader using git:

$ git clone https://github.com/greatscottgadgets/saturn-v

Build the DFU bootloader by invoking make. An example invocation for modern LUNA hardware might look like:

35

https://github.com/blacksphere/blackmagic
https://www.segger.com/products/debug-probes/j-link/
https://www.segger.com/products/debug-probes/j-link/
http://openocd.org/doc/html/Debug-Adapter-Hardware.html
https://developer.arm.com/tools-and-software/open-source-software/developer-tools/gnu-toolchain/gnu-rm
http://dfu-util.sourceforge.net/
https://github.com/greatscottgadgets/saturn-v

LUNA

$ cd saturn-v
$ make

If you’re building a board that predates r0.3 hardware, you’ll need to specify the board you’re building for:

$ cd saturn-v
$ make BOARD=luna_d21

The build should yield two useful build products: bootloader.elf and bootloader.bin; your SWD programmer
will likely consume one of these two files.

Next, connect your SWD programmer to the header labeled uC, and upload bootloader image. You can use both the
ports labelled Sideband and Main Host to power the board in this process. If you’re using the Black Magic Probe,
this might look like:

$ arm-none-eabi-gdb -nx --batch \
-ex 'target extended-remote /dev/ttyACM0' \
-ex 'monitor swdp_scan' \
-ex 'attach 1' \
-ex 'load' \
-ex 'kill' \
bootloader.elf

If you are using openocd, the process might look similar to the following (add the configuration file for your SWD
adapter:

$ openocd -f openocd/scripts/target/at91samdXX.cfg
Open On-Chip Debugger 0.11.0-rc2
Licensed under GNU GPL v2
Info : Listening on port 4444 for telnet connections
Info : clock speed 400 kHz
Info : SWD DPIDR 0x0bc11477
Info : at91samd.cpu: hardware has 4 breakpoints, 2 watchpoints
Info : at91samd.cpu: external reset detected

If your programmer works best with .bin files, be sure to upload the bootloader.bin to the start of flash (address
0x00000000).

Once the bootloader is installed, you should see LED A blinking rapidly. This is the indication that your board is in
Recovery Mode (RVM), and can be programmed via DFU.

You can verify that the board is DFU-programmable by running dfu-util while connected to the USB port labelled
Sideband:

$ dfu-util --list
dfu-util 0.9

Copyright 2005-2009 Weston Schmidt, Harald Welte and OpenMoko Inc.
Copyright 2010-2016 Tormod Volden and Stefan Schmidt
This program is Free Software and has ABSOLUTELY NO WARRANTY
Please report bugs to http://sourceforge.net/p/dfu-util/tickets/

Found DFU: [1d50:615c] ver=0000, devnum=22, cfg=1, intf=0, path="2-3.3.1.2", alt=1, name=
→˓"SRAM"

(continues on next page)

36 Chapter 7. Self-made Hardware Bringup

LUNA

(continued from previous page)

Found DFU: [1d50:615c] ver=0000, devnum=22, cfg=1, intf=0, path="2-3.3.1.2", alt=0, name=
→˓"Flash"

If your device shows up as a LUNA board, congratulations! You’re ready to move on to the next step.

7.3.1 Optional: Bootloader Locking

Optionally, you can reversibly lock the bootloader region of the Debug Controller, preventing you from accidentally
overwriting the bootloader. This is most useful for users developing code for the Debug Controller.

If you choose to lock the bootloader, you should lock the first 4KiB of flash. Note that currently, the bootloader lock
feature of Black Magic Probe devices always locks 8KiB of flash; and thus cannot be used for LUNA.

7.4 Build/upload Apollo

The next bringup step is to upload the Apollo Debug Controller firmware, which will provide an easy way to interface
with the board’s FPGA and any gateware running on it. The Apollo source is located [in its own repository](https:
//github.com/greatscottgadgets/apollo).

You can clone the bootloader using git:

$ git clone https://github.com/greatscottgadgets/apollo

You can build and run the firmware in one step by invoking make. In order to ensure your firmware matches
the hardware it’s running on, you’ll need to provide the hardware revision using the BOARD_REVISION_MAJOR and
BOARD_REVISION_MINOR make variables.

The board’s hardware revision is printed on its silkscreen in a r(MAJOR).(MINOR) format. Board r0.2 would have a
BOARD_REVISION_MAJOR=0 and a BOARD_REVISION_MINOR=2. If your board’s revision ends in a +, do not include
it in the revision number.

An example invocation for a r0.2 board might be:

$ make BOARD_REVISION_MAJOR=0 BOARD_REVISION_MINOR=2 dfu

Once programming is complete, only LED E should be blinking; indicating that the Apollo firmware is idle.

7.5 Running Self-Tests

The final step of bringup is to validate the functionality of your hardware. This is most easily accomplished by running
LUNA’s interactive self-test applet.

Before you can run the applet, you’ll need to have a working luna development environment. See [[Setting up the
development environment]] to get your environment set up.

Next, we can check to make sure your LUNA board is recognized by the LUNA toolchain. Running the apollo info
command will list any detected devices:

$ apollo info
Detected a LUNA device!

Hardware: LUNA r0.2
Serial number: <snip>

7.4. Build/upload Apollo 37

https://github.com/greatscottgadgets/apollo
https://github.com/greatscottgadgets/apollo

LUNA

Once you’ve validated connectivity, you’re ready to try running the interactive-test applet. From the root of the
repository:

$ python3 applets/interactive-test.py

7.6 Troubleshooting

Issue: some of the build files weren’t found; make produces a message like “ no rule to make target “.
Chances are, your clone of LUNA is was pulled down without its submodules. You can pull down the relevant sub-
modules using git:

$ git submodule update --init --recursive

Issue: the ``apollo info`` command doesn’t see a connected board.
On Linux, this can be caused by a permissions issue. Check first for the presence of your device using lsusb; if you
see a device with the VID/PID 1d50:615c, your board is present – and you likely have a permissions issue. You’ll
likely need to install permission-granting udev rules.

38 Chapter 7. Self-made Hardware Bringup

CHAPTER

EIGHT

GENERATED INDICES

• genindex

• modindex

• search

39

LUNA

40 Chapter 8. Generated indices

PYTHON MODULE INDEX

l
luna.gateware.usb.usb2.control, 30
luna.gateware.usb.usb2.device, 15
luna.gateware.usb.usb2.endpoint, 27
luna.gateware.usb.usb2.endpoints.status, 33
luna.gateware.usb.usb2.endpoints.stream, 31
luna.gateware.usb.usb2.packet, 17
luna.gateware.usb.usb2.reset, 25

41

LUNA

42 Python Module Index

INDEX

A
ack (luna.gateware.usb.usb2.packet.HandshakeExchangeInterface

attribute), 17
ACK_PID (luna.gateware.usb.usb2.packet.USBHandshakeDetector

attribute), 23
active_address (luna.gateware.usb.usb2.endpoint.EndpointInterface

attribute), 29
active_config (luna.gateware.usb.usb2.endpoint.EndpointInterface

attribute), 29
active_pid (luna.gateware.usb.usb2.packet.USBDataPacketReceiver

attribute), 22
add_control_endpoint()

(luna.gateware.usb.usb2.device.USBDevice
method), 16

add_endpoint() (luna.gateware.usb.usb2.device.USBDevice
method), 17

add_interface() (luna.gateware.usb.usb2.endpoint.USBEndpointMultiplexer
method), 30

add_interface() (luna.gateware.usb.usb2.packet.USBDataPacketCRC
method), 20

add_interface() (luna.gateware.usb.usb2.packet.USBInterpacketTimer
method), 24

add_request_handler()
(luna.gateware.usb.usb2.control.USBControlEndpoint
method), 31

add_standard_control_endpoint()
(luna.gateware.usb.usb2.device.USBDevice
method), 17

add_standard_request_handlers()
(luna.gateware.usb.usb2.control.USBControlEndpoint
method), 31

address (luna.gateware.usb.usb2.packet.TokenDetectorInterface
attribute), 19

address (luna.gateware.usb.usb2.packet.USBTokenDetector
attribute), 24

address_changed (luna.gateware.usb.usb2.endpoint.EndpointInterface
attribute), 29

attach() (luna.gateware.usb.usb2.packet.InterpacketTimerInterface
method), 18

B
bus_busy (luna.gateware.usb.usb2.reset.USBResetSequencer

attribute), 25
bus_reset (luna.gateware.usb.usb2.reset.USBResetSequencer

attribute), 25

C
config_changed (luna.gateware.usb.usb2.endpoint.EndpointInterface

attribute), 29
connect (luna.gateware.usb.usb2.device.USBDevice at-

tribute), 15
crc (luna.gateware.usb.usb2.packet.DataCRCInterface

attribute), 17
crc (luna.gateware.usb.usb2.packet.USBDataPacketGenerator

attribute), 21
crc_mismatch (luna.gateware.usb.usb2.packet.USBDataPacketReceiver

attribute), 23
current_speed (luna.gateware.usb.usb2.reset.USBResetSequencer

attribute), 26

D
data_crc (luna.gateware.usb.usb2.endpoint.EndpointInterface

attribute), 29
data_crc (luna.gateware.usb.usb2.packet.USBDataPacketDeserializer

attribute), 21
data_crc (luna.gateware.usb.usb2.packet.USBDataPacketReceiver

attribute), 22
data_pid (luna.gateware.usb.usb2.packet.USBDataPacketGenerator

attribute), 21
DataCRCInterface (class in

luna.gateware.usb.usb2.packet), 17
detected (luna.gateware.usb.usb2.packet.USBHandshakeDetector

attribute), 23
discard (luna.gateware.usb.usb2.endpoints.stream.USBStreamInEndpoint

attribute), 32

E
endpoint (luna.gateware.usb.usb2.packet.TokenDetectorInterface

attribute), 19
EndpointInterface (class in

luna.gateware.usb.usb2.endpoint), 27

F
flush (luna.gateware.usb.usb2.endpoints.stream.USBStreamInEndpoint

43

LUNA

attribute), 32
frame (luna.gateware.usb.usb2.packet.TokenDetectorInterface

attribute), 19
frame_number (luna.gateware.usb.usb2.device.USBDevice

attribute), 16
full_speed_only (luna.gateware.usb.usb2.device.USBDevice

attribute), 15

H
HandshakeExchangeInterface (class in

luna.gateware.usb.usb2.packet), 17
handshakes_in (luna.gateware.usb.usb2.endpoint.EndpointInterface

attribute), 28
handshakes_out (luna.gateware.usb.usb2.endpoint.EndpointInterface

attribute), 28

I
interface (luna.gateware.usb.usb2.control.USBControlEndpoint

attribute), 30
interface (luna.gateware.usb.usb2.endpoints.status.USBSignalInEndpoint

attribute), 33
interface (luna.gateware.usb.usb2.endpoints.stream.USBMultibyteStreamInEndpoint

attribute), 31
interface (luna.gateware.usb.usb2.endpoints.stream.USBStreamInEndpoint

attribute), 32
interface (luna.gateware.usb.usb2.endpoints.stream.USBStreamOutEndpoint

attribute), 33
interface (luna.gateware.usb.usb2.packet.USBTokenDetector

attribute), 24
InterpacketTimerInterface (class in

luna.gateware.usb.usb2.packet), 18
is_in (luna.gateware.usb.usb2.packet.TokenDetectorInterface

attribute), 19
is_out (luna.gateware.usb.usb2.packet.TokenDetectorInterface

attribute), 19
is_ping (luna.gateware.usb.usb2.packet.TokenDetectorInterface

attribute), 20
is_setup (luna.gateware.usb.usb2.packet.TokenDetectorInterface

attribute), 19

L
length (luna.gateware.usb.usb2.packet.USBDataPacketDeserializer

attribute), 21
line_state (luna.gateware.usb.usb2.reset.USBResetSequencer

attribute), 25
low_speed_only (luna.gateware.usb.usb2.device.USBDevice

attribute), 15
low_speed_only (luna.gateware.usb.usb2.reset.USBResetSequencer

attribute), 25
luna.gateware.usb.usb2.control

module, 30
luna.gateware.usb.usb2.device

module, 15
luna.gateware.usb.usb2.endpoint

module, 27
luna.gateware.usb.usb2.endpoints.status

module, 33
luna.gateware.usb.usb2.endpoints.stream

module, 31
luna.gateware.usb.usb2.packet

module, 17
luna.gateware.usb.usb2.reset

module, 25

M
microframe_number (luna.gateware.usb.usb2.device.USBDevice

attribute), 16
module

luna.gateware.usb.usb2.control, 30
luna.gateware.usb.usb2.device, 15
luna.gateware.usb.usb2.endpoint, 27
luna.gateware.usb.usb2.endpoints.status,

33
luna.gateware.usb.usb2.endpoints.stream,

31
luna.gateware.usb.usb2.packet, 17
luna.gateware.usb.usb2.reset, 25

N
nak (luna.gateware.usb.usb2.packet.HandshakeExchangeInterface

attribute), 17
NAK_PID (luna.gateware.usb.usb2.packet.USBHandshakeDetector

attribute), 23
new_address (luna.gateware.usb.usb2.endpoint.EndpointInterface

attribute), 29
new_config (luna.gateware.usb.usb2.endpoint.EndpointInterface

attribute), 29
new_frame (luna.gateware.usb.usb2.device.USBDevice

attribute), 16
new_frame (luna.gateware.usb.usb2.packet.TokenDetectorInterface

attribute), 19
new_packet (luna.gateware.usb.usb2.packet.USBDataPacketDeserializer

attribute), 21
new_token (luna.gateware.usb.usb2.packet.TokenDetectorInterface

attribute), 19
nyet (luna.gateware.usb.usb2.packet.HandshakeExchangeInterface

attribute), 18
NYET_PID (luna.gateware.usb.usb2.packet.USBHandshakeDetector

attribute), 23

O
operating_mode (luna.gateware.usb.usb2.reset.USBResetSequencer

attribute), 26
or_join_interface_signals()

(luna.gateware.usb.usb2.endpoint.USBEndpointMultiplexer
method), 30

44 Index

LUNA

P
packet (luna.gateware.usb.usb2.packet.USBDataPacketDeserializer

attribute), 21
packet_complete (luna.gateware.usb.usb2.packet.USBDataPacketReceiver

attribute), 23
packet_id (luna.gateware.usb.usb2.packet.USBDataPacketDeserializer

attribute), 21
packet_id (luna.gateware.usb.usb2.packet.USBDataPacketReceiver

attribute), 22
pid (luna.gateware.usb.usb2.packet.TokenDetectorInterface

attribute), 19
prevent_high_speed (luna.gateware.usb.usb2.reset.USBResetSequencer

attribute), 25

R
ready_for_response (luna.gateware.usb.usb2.packet.TokenDetectorInterface

attribute), 19
ready_for_response (luna.gateware.usb.usb2.packet.USBDataPacketReceiver

attribute), 23
reset_detected (luna.gateware.usb.usb2.device.USBDevice

attribute), 16
rx (luna.gateware.usb.usb2.endpoint.EndpointInterface

attribute), 28
rx_activity_led (luna.gateware.usb.usb2.device.USBDevice

attribute), 16
rx_complete (luna.gateware.usb.usb2.endpoint.EndpointInterface

attribute), 28
rx_data (luna.gateware.usb.usb2.packet.USBDataPacketCRC

attribute), 20
rx_invalid (luna.gateware.usb.usb2.endpoint.EndpointInterface

attribute), 28
rx_pid_toggle (luna.gateware.usb.usb2.endpoint.EndpointInterface

attribute), 28
rx_ready_for_response

(luna.gateware.usb.usb2.endpoint.EndpointInterface
attribute), 28

rx_timeout (luna.gateware.usb.usb2.packet.InterpacketTimerInterface
attribute), 18

rx_valid (luna.gateware.usb.usb2.packet.USBDataPacketCRC
attribute), 20

S
shared (luna.gateware.usb.usb2.endpoint.USBEndpointMultiplexer

attribute), 29
signal (luna.gateware.usb.usb2.endpoints.status.USBSignalInEndpoint

attribute), 33
sof_detected (luna.gateware.usb.usb2.device.USBDevice

attribute), 16
SOF_PID (luna.gateware.usb.usb2.packet.USBTokenDetector

attribute), 25
speed (luna.gateware.usb.usb2.endpoint.EndpointInterface

attribute), 28
speed (luna.gateware.usb.usb2.packet.USBInterpacketTimer

attribute), 24

speed (luna.gateware.usb.usb2.packet.USBTokenDetector
attribute), 24

stall (luna.gateware.usb.usb2.packet.HandshakeExchangeInterface
attribute), 18

STALL_PID (luna.gateware.usb.usb2.packet.USBHandshakeDetector
attribute), 23

start (luna.gateware.usb.usb2.packet.DataCRCInterface
attribute), 17

start (luna.gateware.usb.usb2.packet.InterpacketTimerInterface
attribute), 18

status_read_complete
(luna.gateware.usb.usb2.endpoints.status.USBSignalInEndpoint
attribute), 33

stream (luna.gateware.usb.usb2.endpoints.stream.USBMultibyteStreamInEndpoint
attribute), 31

stream (luna.gateware.usb.usb2.endpoints.stream.USBStreamInEndpoint
attribute), 32

stream (luna.gateware.usb.usb2.endpoints.stream.USBStreamOutEndpoint
attribute), 33

stream (luna.gateware.usb.usb2.packet.USBDataPacketGenerator
attribute), 22

stream (luna.gateware.usb.usb2.packet.USBDataPacketReceiver
attribute), 22

suspended (luna.gateware.usb.usb2.device.USBDevice
attribute), 16

suspended (luna.gateware.usb.usb2.reset.USBResetSequencer
attribute), 26

T
termination_select (luna.gateware.usb.usb2.reset.USBResetSequencer

attribute), 26
timer (luna.gateware.usb.usb2.endpoint.EndpointInterface

attribute), 29
timer (luna.gateware.usb.usb2.packet.USBDataPacketReceiver

attribute), 22
TOKEN_SUFFIX (luna.gateware.usb.usb2.packet.USBTokenDetector

attribute), 25
TokenDetectorInterface (class in

luna.gateware.usb.usb2.packet), 18
tokenizer (luna.gateware.usb.usb2.endpoint.EndpointInterface

attribute), 27
tx (luna.gateware.usb.usb2.endpoint.EndpointInterface

attribute), 28
tx (luna.gateware.usb.usb2.packet.USBDataPacketGenerator

attribute), 22
tx (luna.gateware.usb.usb2.reset.USBResetSequencer at-

tribute), 26
tx_activity_led (luna.gateware.usb.usb2.device.USBDevice

attribute), 16
tx_allowed (luna.gateware.usb.usb2.packet.InterpacketTimerInterface

attribute), 18
tx_data (luna.gateware.usb.usb2.packet.USBDataPacketCRC

attribute), 20

Index 45

LUNA

tx_pid_toggle (luna.gateware.usb.usb2.endpoint.EndpointInterface
attribute), 28

tx_timeout (luna.gateware.usb.usb2.packet.InterpacketTimerInterface
attribute), 18

tx_valid (luna.gateware.usb.usb2.packet.USBDataPacketCRC
attribute), 20

U
USBControlEndpoint (class in

luna.gateware.usb.usb2.control), 30
USBDataPacketCRC (class in

luna.gateware.usb.usb2.packet), 20
USBDataPacketDeserializer (class in

luna.gateware.usb.usb2.packet), 20
USBDataPacketGenerator (class in

luna.gateware.usb.usb2.packet), 21
USBDataPacketReceiver (class in

luna.gateware.usb.usb2.packet), 22
USBDevice (class in luna.gateware.usb.usb2.device), 15
USBEndpointMultiplexer (class in

luna.gateware.usb.usb2.endpoint), 29
USBHandshakeDetector (class in

luna.gateware.usb.usb2.packet), 23
USBHandshakeGenerator (class in

luna.gateware.usb.usb2.packet), 23
USBInterpacketTimer (class in

luna.gateware.usb.usb2.packet), 24
USBMultibyteStreamInEndpoint (class in

luna.gateware.usb.usb2.endpoints.stream),
31

USBResetSequencer (class in
luna.gateware.usb.usb2.reset), 25

USBSignalInEndpoint (class in
luna.gateware.usb.usb2.endpoints.status),
33

USBStreamInEndpoint (class in
luna.gateware.usb.usb2.endpoints.stream),
32

USBStreamOutEndpoint (class in
luna.gateware.usb.usb2.endpoints.stream),
32

USBTokenDetector (class in
luna.gateware.usb.usb2.packet), 24

V
vbus_connected (luna.gateware.usb.usb2.reset.USBResetSequencer

attribute), 25

46 Index

	Introduction
	Status & Support
	Support for Device Mode
	Support for Host Mode
	“Reference” Boards

	Getting Started
	Setting up a Build Environment
	Prerequisites
	Installation
	Testing
	The apollo utility.

	LUNA On Your Own Hardware
	High-Speed via a ULPI PHY
	Full-Speed using FPGA I/O

	Core USB 2.0 Device Gateware
	Conceptual Components
	Token Detector
	Handshake Detector
	Data Packet Receiver
	Device State Manager
	Handshake Generator
	Data Packet Transmitter
	Data CRC Unit
	Interpacket Timer
	Reset/Suspend Sequencer

	usb2.device Components
	Return value

	usb2.packet Components
	usb2.reset Components

	Gateware Endpoint Interfaces
	Exclusivity
	usb2.endpoint Components
	Provided Endpoint Interfaces
	usb2.control Components
	usb2.interfaces.eptri Components
	Bulk Endpoint Helpers / usb2.endpoints.stream Components
	Interrupt Endpoint Helpers / usb2.endpoints.status Components

	Self-made Hardware Bringup
	Prerequisites
	Bring-up Process
	Build/upload Saturn-V
	Optional: Bootloader Locking

	Build/upload Apollo
	Running Self-Tests
	Troubleshooting

	Generated indices
	Python Module Index
	Index

