

LUNA: USB Multitool and Gateware Library

This is the documentation for the LUNA gateware library; and the developer document for the LUNA
USB multitool hardware and software.

[image: _images/board_readme_side.jpg]
Much like the LUNA hardware, gateware, and software, this documentation is a work in progress.
Contributions are always appreciated.

Contents:

	Introduction

	Status & Support
	Support for Device Mode

	Support for Host Mode

	“Reference” Boards

	Getting Started
	Setting up a Build Environment

	LUNA On Your Own Hardware
	High-Speed via a ULPI PHY

	Full-Speed using FPGA I/O

	Core USB 2.0 Device Gateware
	Conceptual Components

	usb2.device Components

	usb2.packet Components

	usb2.reset Components

	Gateware Endpoint Interfaces
	Exclusivity

	usb2.endpoint Components

	Provided Endpoint Interfaces

	usb2.control Components

	usb2.interfaces.eptri Components

	Bulk Endpoint Helpers / usb2.endpoints.stream Components

	Interrupt Endpoint Helpers / usb2.endpoints.status Components

	Self-made Hardware Bringup
	Prerequisites

	Bring-up Process

	Build/upload Saturn-V

	Build/upload Apollo

	Running Self-Tests

	Troubleshooting

Generated indices

	Index

	Module Index

	Search Page

Introduction

Note: LUNA is still a work in progress; and while much of the technology is in a usable state,
much of its feature-set is still being built. Consider LUNA an ‘unstable’ library, for the time being.

Welcome to the LUNA project! LUNA is a full toolkit for working with USB using FPGA technology; and provides
hardware, gateware, and software to enable USB applications.

[image: _images/board_readme.jpg]
Some things you can use LUNA for, currently:

	Protocol analysis for Low, Full or High speed USB. LUNA provides both hardware designs and gateware that
allow passive USB monitoring. When combined with the ViewSB [https://github.com/usb-tools/viewsb] USB analyzer
toolkit, LUNA hardware+gateware can be used as a full-featured USB analyzer.

	Creating your own Low, Full or High speed USB device. LUNA provides a collection of Amaranth gateware that
allows you to easily create USB devices in gateware, software, or a combination of the two.

	Building USB functionality into a new or existing System-on-a-Chip (SoC). LUNA is capable of generating custom
peripherals targeting the common Wishbone bus; allowing it to easily be integrated into SoC designs; and the
[luna-soc](https://github.com/greatscottgadgets/luna-soc) library provides simple automation for developing simple
SoC designs.

Some things you’ll be able to use LUNA for in the future:

	Man-in-the-middle’ing USB communications. The LUNA toolkit will be able to act
as a USB proxy, transparently modifying USB data as it flows between a host and a device.

	USB reverse engineering and security research. The LUNA toolkit will serve as an ideal
backend for tools like FaceDancer [https://github.com/usb-tools/facedancer]; allowing easily
emulation and rapid prototyping of compliant and non-compliant USB devices.

More detail on these features is covered in the source [https://github.com/greatscottgadgets/luna], and in
the remainder of this documentation.

Status & Support

The LUNA library is a work in progress; but many of its features are usable enough for inclusion in your own designs.
More testing of our work – and more feedback – is always appreciated!

Support for Device Mode

	Feature

	
	Status

	USB Communications

	high-/full-speed with UTMI PHY

	complete, needs testing

	
	high-/full-speed with ULPI PHY

	feature complete

	
	full-speed using raw gpio / pull resistors

	feature complete

	
	super-speed using PIPE PHY

	basic support complete; still experimental

	
	super-speed using SerDes PHY

	in progress

	
	low speed, via ULPI/UTMI PHY

	untested

	
	low speed, using raw gpio / pull resistors

	unsupported, currently

	
	
	

	Control Transfers / Endpoints

	user-defined

	feature complete

	
	fully-gateware-implemented, with user vendor request handler support

	complete, could use improvements

	
	CPU interface

	working; needs more interfaces & examples

	
	
	

	Bulk Transfers / Endpoints

	user-defined

	feature complete

	
	IN stream helpers

	feature complete

	
	OUT stream helpers

	feature complete

	
	CPU interface

	working; needs more interfaces & examples

	
	
	

	Interrupt Transfers / Endpoints

	user-defined

	feature complete

	
	status-to-host helper

	complete, needs testing

	
	status-from-host helper

	planned

	
	CPU interface

	working; needs more interfaces & examples

	
	
	

	Isochronous Transfers / Endpoints

	user-defined

	planned

	
	IN transfer helpers

	complete; needs examples and testing

	
	OUT transfer helpers

	planned

	
	CPU interface

	planned

	
	
	

	USB Analysis

	basic analysis

	basic analysis working, in progress

	
	full analysis support

	planned

Support for Host Mode

The LUNA library currently does not provide any support for operating as a USB host; though the low-level USB
communications interfaces have been designed to allow for eventual host support. Host support is not currently
a priority, but contributions are welcome.

“Reference” Boards

The LUNA library is intended to work on any FPGA with sufficient fabric performance and resources; but testing is
only performed on a collection of reference boards.

	Board

	FPGA Family

	PHY

	Status

	LUNA Hardware

	ECP5

	ULPI x3 (USB3343)

	Fully Supported

	OpenVizsla USB Analyzer

	Spartan 6

	ULPI (USB3343)

	Fully Supported

	LambdaConcept ECPIX-5

	ECP5

	ULPI (USB3300), SerDes PHY

	High-Speed Fully Supported / Super-Speed In Progress

	TinyFPGA Ex

	ECP5

	SerDes PHY

	Planned Super-Speed Device Mode

	Logicbone

	ECP5

	SerDes PHY

	Full-Speed Fully Supported / Super-Speed In Progress

	Daisho

	Cyclone IV

	PIPE (TUSB1310A)

	Planned Super-Speed Device Mode

	PHYWhisperer-USB

	Spartan 7

	UTMI

	Planned Device Mode Support

	LambdaConcept USB2Sniffer

	Artix 7

	ULPI x2 (USB3300)

	Fully Supported

	OrangeCrab

	ECP5

	no hardware PHY

	Full-Speed/Device Mode Support

	ULX3S

	ECP5

	no hardware PHY

	Full-Speed/Device Mode Support

	Fomu PVT/Hacker

	iCE40 UP

	no hardware PHY

	Full-Speed/Device Mode Support

	Fomu EVT3

	iCE40 UP

	no hardware PHY

	Full-Speed/Device Mode Support

	iCEBreaker Bitsy

	iCE40 UP

	no hardware PHY

	Full-Speed/Device Mode Support

	Glasgow

	iCE40 HX

	no hardware PHY

	Planned Full-Speed Support

	TinyFPGA Bx

	iCE40 LP

	no hardware PHY

	Full-Speed/Device Mode Support

	Digilent Nexys Video (SS with add-on board)

	Artix 7

	FMC for PIPE (TUSB1310A) add-on boards

	Super-Speed Fully Supported

	Digilent Genesys2 (SS with add-on board)

	Kintex 7

	ULPI (TUSB1210), FMC for PIPE (TUSB1310A) add-on boards

	High/Super-Speed Fully Supported

Getting Started

Setting up a Build Environment

This guide highlights the installation / setup process for the luna
gateware library. It focuses on getting the Python module (and
prerequisites) up and running.

Prerequisites

	Python 3.7, or later.

	A working FPGA toolchain. We only officially support a toolchain
composed of the Project
Trellis [https://github.com/YosysHQ/prjtrellis] ECP5 tools, the
yosys [https://github.com/YosysHQ/yosys] synthesis suite, and the
NextPNR [https://github.com/YosysHQ/nextpnr] place-and-route
tool. All of these tools must be built from master.

	A working installation of
Amaranth HDL [https://github.com/amaranth-lang/amaranth].

Installation

Currently, the LUNA library is considered a “work-in-progress”; and
thus it’s assumed you’ll want to use a local copy of LUNA for
development.

The easiest way to set this up is to install the distribution in your working environment.
From the root of the repository:

Install a copy of our local tools.
pip install .

Alternatively: install all dependencies,
including optional development packages (required for running applets and examples).
pip install .[dev]

If you want to install LUNA to your machine globally (not recommended), you can do so
using the following single command:

Create a LUNA package, and install it.
pip install . --user

Testing

The easiest way to test your installation is to build one of the test
applets. These applets are just Python scripts that construct and
program gateware using Amaranth HDL; so they can be run like any other script:

With GSG or self-built LUNA hardware connected; we can run the full test,
and test both our installation and the attached hardware.
python applets/interactive-test.py

Without LUNA hardware connected, we'll only build the applet, to exercise
our toolchain.
python applets/interactive-test.py --dry-run

The apollo utility.

The luna distribution depends on apollo, which includes a utility
that can be used to perform various simple functions useful in development;
including simple JTAG operations, SVF playback, manipulating the board’s flash,
and debug comms.

$ apollo
usage: apollo [-h] command: [[argument]] [[value]]

Utility for LUNA development via an onboard Debug Controller.

positional arguments:
 command: info -- Prints information about any connected LUNA-compatible boards
 configure -- Uploads a bitstream to the device's FPGA over JTAG.
 erase -- Clears the attached board's configuration flash.
 program -- Programs the target bitstream onto the attached FPGA.
 jtag-scan -- Prints information about devices on the onboard JTAG chain.
 flash-scan -- Attempts to detect any attached configuration flashes.
 svf -- Plays a given SVF file over JTAG.
 spi -- Sends the given list of bytes over debug-SPI, and returns the response.
 spi-inv -- Sends the given list of bytes over SPI with inverted CS.
 spi-reg -- Reads or writes to a provided register over the debug-SPI.
 [argument] the argument to the given command; often a filename
 [value] the value to a register write command

To have easy access to the apollo command, you’ll need to ensure
that your python binary directory is in your PATH. For macOS/Linux,
this often means adding ~/.local/bin to your PATH.

LUNA On Your Own Hardware

The LUNA stack is designed to be easy to use on your own FPGA hardware – if you can already run Amaranth designs
on your board, all you’ll need is to set up some I/O definitions and some clock domains.

The exact platform requirements depend on how you’ll perform USB interfacing, and are detailed below.

High-Speed via a ULPI PHY

Using a ULPI PHY is relatively straightforward; and typically requires no hardware beyond the ULPI PHY. LUNA works with
both designs that receive their usb-domain clocks from the PHY (typical) and designs that provide a 60MHz clock to
their PHY.

The following clock domains are required:

	Domain Name

	Frequency

	Description

	usb

	60 MHz

	Core clock for the PHY’s clock domain. Can be provided to the FPGA by the PHY, or provided to the PHY by the FPGA.
See below.

An I/O resource with the following subsignals is required:

	Subsignal Name

	Width

	Direction

	Description

	clk

	1

	input or output

	The ULPI bus clock. Should be configured as an input if the PHY is providing our clock
(typical), or as an output if the FPGA will provide the clock to the PHY.

	data

	8

	bidirectional

	The bidirectional data bus.

	dir

	1

	input

	The ULPI direction signal.

	nxt

	1

	input

	The ULPI next signal.

	stp

	1

	output

	The ULPI stop signal.

	rst

	1

	output

	The ULPI reset signal. The gateware asserts this signal when the PHY should be reset;
if the PHY requires an active-low reset, this can be inverted with PinsN.

An example resource might look like:

Targeting the USB3300 PHY, which provides our clock.
Resource("ulpi", 0,
 Subsignal("data", Pins(data_sites, dir="io")),
 Subsignal("clk", Pins(clk_site, dir="i")),
 Subsignal("dir", Pins(dir_site, dir="i")),
 Subsignal("nxt", Pins(nxt_site, dir="i")),
 Subsignal("stp", Pins(stp_site, dir="o")),
 Subsignal("rst", Pins(reset_site, dir="o")),
 Attrs(IO_TYPE="LVCMOS33")
)

Full-Speed using FPGA I/O

LUNA provides a gateware PHY that enables an FPGA to communicate at Full Speed using only FPGA 3V3 I/O
and a pull-up resistor. The FPGA must be able to provide stable 48 MHz and 12 MHz clocks.

The following clock domains are required:

	Domain Name

	Frequency

	Description

	usb

	12 MHz

	Core clock for USB data. Ticks at the USB bitrate of 12MHz, and drives most of the USB logic.

	usb_io

	48 MHz

	Edge clock for the USB I/O. Used at the I/O boundary for clock recovery and NRZI encoding.

An I/O resource with the following subsignals is required:

	Subsignal Name

	Width

	Direction

	Description

	d_p

	1

	bidirectional

	The raw USB D+ line; must be on a 3.3V logic bank.

	d_n

	1

	bidirectional

	The raw USB D- line; must be on a 3.3V logic bank.

	pullup

	1

	output

	Control for the USB pull-up resistor; should be connected to D+ via a 1.5k resistor.

	vbus_valid

	1

	input

	Optional. If provided, this signal will be used for VBUS detection logic; should be asserted whenever
VBUS is present. Many devices are “bus-powered” (receive their power from USB), and thus have no need
for VBUS detection, in which case this signal can be omitted.

An example resource might look like:

Resource("usb", 0,
 Subsignal("d_p", Pins("A4")),
 Subsignal("d_n", Pins("A2")),
 Subsignal("pullup", Pins("D5", dir="o")),
 Attrs(IO_STANDARD="SB_LVCMOS"),
),

Core USB 2.0 Device Gateware

The LUNA gateware library provides a flexible base USB Device model, which is designed to provide the basis
for creating both application-specific and general-purpose USB hardware.

USB devices are created using two core components:

	A USBDevice instance, which provides hardware that handles low-level USB communications, and which is
designed to be applicable to all devices; and

	One or more endpoint interfaces, which handle high-level USB communications – and provide the logic
the tailors the device to its intended application.

The USBDevice communicates with low-level transciever hardware via the FPGA-friendly USB Transceiver
Macrocell Interface (UTMI). Translators can be used to transparently adapt the FPGA interface to other
common bus formats; including the common ULPI low-pin-count variant of UTMI.

[image: USB 2.0 architecture diagram]
The overall architecture of a LUNA USB 2.0 device, highlighting the USBDevice components, their
connections to the endpoint interfaces, and optional bus translator.

Conceptual Components

The USBDevice class contains the low-level communications hardware necessary to implement a USB device;
including hardware for maintaining device state, detecting events, reading data from the host, and generating
responses.

Token Detector

The Token Detector detects token packets from the host; and is responsible for:

	Detecting start of frame packets, which are used to maintain consistent timing across USB devices.

	Detecting the start of USB transactions.

	Identifying the device and endpoint to which each transaction is addressed.

As each USB transaction starts with a token packet; it is implicitly the Token Detector’s responsiblity
to notify endpoint interfaces of imminent incoming data (OUT transactions) and requests for data (IN
transactions).

Handshake Detector

The Handshake Detector detects handshake packets from the host; and is responsible for
identifying the host’s response to packets from the device – indicating whether the host
successfully received a packet sent from the device.

Data Packet Receiver

The Data Packet Receiver is responsible for receiving data packets from the device – including
the payloads of both OUT and SETUP transactions – and translating them to a simple data stream.

The Data Receiver handles error detection; and thus validates the checksums of each packet using the
Data CRC Unit.

Device State Manager

The Device State Manager is responsible for storing global device state – primarily, the
device’s current address and configuration. The device state manager accepts changes to
the device’s address/configuration from each endpoint interface; and automatically resets the
relevant parameters when a USB reset is received.

Handshake Generator

The Handshake Generator provides a simple, strobe-based interface that allows endpoints to
easily emit handshake packets – allowing the device to acknowledge packets (ACK), issue stalls
(STALL) , and to rate limit communications (NAK/NYET).

Data Packet Transmitter

The Data Packet Generator is responsible for generating outgoing USB packets from simple data
streams; including emitting data packet IDs, sending data, and appending data CRCs. This class
automatically appends the required data CRC-16s.

Data CRC Unit

The Data CRC Unit is shared among the packet receiver and packet generator; and handles computing
the CRC-16 for USB data streams.

Interpacket Timer

The Interpacket Timer is responsible for maintaining maximum and minimum interpacket delays; ensuring
that the device can correctly provide bus turnover times; and knows the window in which handshake packets
are expected to arrive.

Reset/Suspend Sequencer

The Reset/Suspend Sequencer is responsible for detecing USB reset and suspend events; and where applicable,
participating in the USB reset protocol’s high-speed detection handshake.

The sequencer:

	Detects USB resets; and communicates to the Device State Manager that it should return the device to an
un-addressed, un-configured state.

	Performs the high speed detection handshake, which allows the device to switch to High Speed operation;
and thus is necessary for the device to operate at high speed.

	Manages the high-speed terminations; as part of the reset-handshake and suspend protocols.

	Detects the periods of inactivity that indicate the device is being suspended; and automatically disengages
high-speed terminations while the device is in suspend.

usb2.device Components

Contains the organizing hardware used to add USB Device functionality
to your own designs; including the core USBDevice class.

	
class luna.gateware.usb.usb2.device.USBDevice(*args, src_loc_at=0, **kwargs)

	Bases: Elaboratable

Core gateware common to all LUNA USB2 devices.

The USBDevice module contains the low-level communications hardware necessary to implement a USB device;
including hardware for maintaining device state, detecting events, reading data from the host, and generating
responses.

This class can be instantiated directly, and used to build a USB device,
or can be subclassed to create custom device types.

To configure a USBDevice from a CPU or other wishbone master, see USBDeviceController;
which can easily be attached using its attach method.

	Parameters:

	
	bus ([UTMI interface, ULPI Interface]) – The UTMI or ULPI PHY connection to be used for communications.

	handle_clocking (bool, Optional) – True iff we should attempt to connect up the usb clock domain to the PHY
automatically based on the clk signals’s I/O direction. This option may not work
for non-simple connections; in which case you will need to connect the clock signal
yourself.

	
connect

	Held high to keep the current USB device connected; or held low to disconnect.

	Type:

	Signal(), input

	
low_speed_only

	If high, the device will operate at low speed.

	Type:

	Signal(), input

	
full_speed_only

	If high, the device will be prohibited from operating at high speed.

	Type:

	Signal(), input

	
frame_number

	The current USB frame number.

	Type:

	Signal(11), output

	
microframe_number

	The current USB microframe number. Always 0 on non-HS connections.

	Type:

	Signal(3), output

	
sof_detected

	Pulses for one cycle each time a SOF is detected; and thus our frame number has changed.

	Type:

	Signal(), output

	
new_frame

	Strobe that indicates a new frame (not microframe) is detected.

	Type:

	Signal(), output

	
reset_detected

	Asserted when the USB device receives a bus reset.

	Type:

	Signal(), output

	
State signals.

	

	
suspended

	High when the device is in USB suspend. This can be (and by the spec must be) used to trigger
the device to enter lower-power states.

	Type:

	Signal(), output

	
tx_activity_led

	Signal that can be used to drive an activity LED for TX.

	Type:

	Signal(), output

	
rx_activity_led

	Signal that can be used to drive an activity LED for RX.

	Type:

	Signal(), output

	
add_control_endpoint()

	Adds a basic control endpoint to the device.

Does not add any request handlers. If you want standard request handlers;
add_standard_control_endpoint automatically adds standard request handlers.

	Return type:

	Returns the endpoint object for the control endpoint.

	
add_endpoint(endpoint)

	Adds an endpoint interface to the device.

	Parameters:

	endpoint (Elaborateable) – The endpoint interface to be added. Can be any piece of gateware with a
EndpointInterface attribute called interface.

	
add_standard_control_endpoint(descriptors: DeviceDescriptorCollection, **kwargs)

	Adds a control endpoint with standard request handlers to the device.

Parameters will be passed on to StandardRequestHandler.

Return value

The endpoint object created.

usb2.packet Components

Contains the gatware module necessary to interpret and generate low-level USB packets.

	
class luna.gateware.usb.usb2.packet.DataCRCInterface

	Bases: Record

Record providing an interface to a USB CRC-16 generator.

	
start

	Strobe that indicates that a new CRC computation should be started.

	Type:

	Signal(), input to CRC generator

	
crc

	The current CRC-16 value; updated with each sent or received byte.

	Type:

	Signal(), output from CRC generator

	
class luna.gateware.usb.usb2.packet.HandshakeExchangeInterface(*, is_detector)

	Bases: Record

Record that carries handshakes detected -or- generated between modules.

	
ack

	When connected to a generator, pulsing this strobe will trigger generating of an ACK.
When connected to a detector, this strobe will be pulsed when an ACK is detected from the host.

	Type:

	Signal()

	
nak

	When connected to a generator, pulsing this strobe will trigger generating of an NAK.
When connected to a detector, this strobe will be pulsed when an NAK is detected from the host.

	Type:

	Signal()

	
stall

	When connected to a generator, pulsing this strobe will trigger generation of a STALL.
Unused in a detector, currently.

	Type:

	Signal()

	
nyet

	When connected to a generator, pulsing this strobe will trigger generation of a NYET.
Unused in a detector, currently.

	Type:

	Signal()

	Parameters:

	is_detector (bool) – If true, this will be considered an interface to a detector that identifies handshakes.
Otherwise, this will be considered an interface to a generator that accepts handshake requests.

	
class luna.gateware.usb.usb2.packet.InterpacketTimerInterface

	Bases: Record

Record providing an interface to our interpacket timer.

See [USB2.0: 7.1.18] and the USBInterpacketTimer gateware for more information.

	
start

	Strobe that indicates when the timer should be started. Usually started at the end of an Rx or Tx event.

	Type:

	Signal(), input to timer

	
tx_allowed

	Strobe that goes high when it’s safe to transmit after an Rx event.

	Type:

	Signal(), output from timer

	
tx_timeout

	Strobe that goes high when the transmit-after-receive window has passed.

	Type:

	Signal(), output from timer

	
rx_timeout

	Strobe that goes high when the receive-after-transmit window has passed.

	Type:

	Signal(), output from timer

	
attach(*subordinates)

	Attaches subordinate interfaces to the given timer interface.

	Parameters:

	subordinates ([InterpacketTimerInterface, Signal]) – Each InterpacketTimerInterface is provided will be fully connected to a given
timer interface. Each Signal provided will be interpreted as a timer reset, and added
to the list of all resets.

	
class luna.gateware.usb.usb2.packet.TokenDetectorInterface

	Bases: Record

Record providing an interface to a USB token detector.

	
pid

	The Packet ID of the most recent token.

	Type:

	Signal(4), detector output

	
address

	The address associated with the relevant token.

	Type:

	Signal(7), detector output

	
endpoint

	The endpoint indicated by the most recent token.

	Type:

	Signal(4), detector output

	
new_token

	Strobe asserted for a single cycle when a new token packet has been received.

	Type:

	Signal(), detector output

	
ready_for_response

	Strobe asserted for a single cycle one inter-packet delay after a token packet is complete.
Indicates when the token packet can be responded to.

	Type:

	Signal(), detector output

	
frame

	The current USB frame number.

	Type:

	Signal(11), detector output

	
new_frame

	Strobe asserted for a single cycle when a new SOF has been received.

	Type:

	Signal(), detector output

	
is_in

	High iff the current token is an IN.

	Type:

	Signal(), detector output

	
is_out

	High iff the current token is an OUT.

	Type:

	Signal(), detector output

	
is_setup

	High iff the current token is a SETUP.

	Type:

	Signal(), detector output

	
is_ping

	High iff the current token is a PING.

	Type:

	Signal(), detector output

	
class luna.gateware.usb.usb2.packet.USBDataPacketCRC(*args, src_loc_at=0, **kwargs)

	Bases: Elaboratable

Gateware that computes a running CRC-16.

By default, this module has no connections to the modules that use it.

These are added using add_interface; this module supports an arbitrary
number of connection interfaces; see add_interface() for restrictions.

	
rx_data

	Receive data input; can be carried directly from a UTMI interface.

	Type:

	Signal(8), input

	
rx_valid

	Receive validity signal; can be carried directly from a UTMI interface.

	Type:

	Signal(), input

	
tx_data

	Transmit data input; can be carried directly from a UTMI interface.

	Type:

	Signal(8), input

	
tx_valid

	When high, the tx_data input is used to update the CRC.

	Type:

	Signal(), input

	Parameters:

	initial_value ([int, Const]) – The initial value of the CRC shift register; the USB default is used if not provided.

	
add_interface(interface: DataCRCInterface)

	Adds an interface to the CRC generator module.

Each interface can reset the CRC; and can read the current CRC value.
No arbitration is performed; it’s assumed that no more than one interface
will be computing a running CRC at at time.

	Parameters:

	interface (DataCRCInterface) – The interface to be added; accepts control signals from other modules, and
brings CRC output to them. This method can be called multiple times to generate
multiplpe CRCs.

	
class luna.gateware.usb.usb2.packet.USBDataPacketDeserializer(*args, src_loc_at=0, **kwargs)

	Bases: Elaboratable

Gateware that captures USB data packet contents and parallelizes them.

	
data_crc

	Connection to the CRC generator.

	Type:

	DataCRCInterface

	
new_packet

	Strobe that pulses high for a single cycle when a new packet is delivered.

	Type:

	Signal(), output

	
packet_id

	The packet ID of the captured PID.

	Type:

	Signal(4), output

	
packet

	Packet data for a the most recently received packet.

	Type:

	Signal(max_packet_size), output

	
length

	The length of the packet data presented on the packet[] output.

	Type:

	Signal(range(0, max_packet_length +1)), output

	Parameters:

	
	utmi (UTMIInterface, or equivalent) – The UTMI bus to observe.

	max_packet_size (int) – The maximum packet (payload) size to be deserialized, in bytes.

	create_crc_generator (bool) – If True, a submodule CRC generator will be created. Excellent for testing.

	
class luna.gateware.usb.usb2.packet.USBDataPacketGenerator(*args, src_loc_at=0, **kwargs)

	Bases: Elaboratable

Module that converts a FIFO-style stream into a USB data packet.

Handles steps such as PID generation and CRC-16 injection.

As a special case, if the stream pulses last (with valid=1) without pulsing
first, we’ll send a zero-length packet.

	
data_pid

	The data packet number to use. The potential PIDS are: 0 = DATA0, 1 = DATA1,
2 = DATA2, 3 = MDATA; the interface is designed so that most endpoints can tie the MSb to
zero and then perform PID toggling by toggling the LSb.

	Type:

	Signal(2), input

	
crc

	Interface to our data CRC generator.

	Type:

	DataCRCInterface

	
stream

	Stream input for the raw data to be transmitted.

	Type:

	USBInStreamInterface

	
tx

	UTMI-subset transmit interface

	Type:

	UTMITransmitInterface

	Parameters:

	standalone (bool) – If True, this unit will include its internal CRC generator. Perfect for unit testing or debugging.

	
class luna.gateware.usb.usb2.packet.USBDataPacketReceiver(*args, src_loc_at=0, **kwargs)

	Bases: Elaboratable

Gateware that converts received USB data packets into a data-stream packets.

It’s important to note that packet payloads are mostly directly carried over from UTMI.
Since USB data is received -prior- to its CRC, one cannot know if a packet is valid until
after it has been compeltely received. As a result, this interface will generate data of
unknown validity, followed by a strobe on either packet_complete or crc_mismatch.
The receiving interface must be prepared to handle crc_mismatch by discarding the received
data.

	
data_crc

	Connection to the CRC generator.

	Type:

	DataCRCInterface

	
timer

	Connection to our interpacket timer.

	Type:

	InterpacketTimerInterface

	
stream

	Stream that carries captured packet data.

	Type:

	USBOutDataStream, output

	
active_pid

	The PID of the data currently being received.

	Type:

	Signal(4), output

	
packet_id

	The packet ID of the most recently captured PID. Becomes valid simultaneous to a strobe on
packet_complete or crc_mismatch.

	Type:

	Signal(4), output

	
packet_complete

	Strobe that pulses high when a new packet is delivered with a valid CRC.

	Type:

	Signal(), output

	
crc_mismatch

	Strobe that pulses high when the given packet has a CRC mismatch; and thus the data
received this far should be discarded.

	Type:

	Signal(), output

	
ready_for_response

	Strobe that indicates that an inter-packet delay has passed since packet_complete,
and thus we’re now ready to respond with a handshake.

	Type:

	Signal(), output

	Parameters:

	
	utmi (UTMIInterface, or equivalent) – The UTMI bus to observe.

	max_packet_size (int) – The maximum packet (payload) size to be deserialized, in bytes.

	standalone (bool) – Debug value. If True, a submodule CRC generator will be created.

	speed (USBSpeed) – USBSpeed signal or constant that specifies our speed in standalone mode.

	
class luna.gateware.usb.usb2.packet.USBHandshakeDetector(*args, src_loc_at=0, **kwargs)

	Bases: Elaboratable

Gateware that detects handshake packets.

	
detected

	Strobes that indicate which handshakes we’re detecting.

	Type:

	HandshakeExchangeInterface

	Parameters:

	utmi ([UTMIInterface, UTMITranslator]) – The UTMI interface to listen on.

	
ACK_PID = 2

	

	
NAK_PID = 10

	

	
NYET_PID = 6

	

	
STALL_PID = 14

	

	
class luna.gateware.usb.usb2.packet.USBHandshakeGenerator(*args, src_loc_at=0, **kwargs)

	Bases: Elaboratable

Module that generates handshake packets, on request.

Attributes:

	issue_ack: Signal(), input
	Pulsed to generate an ACK handshake packet.

	issue_nak: Signal(), input
	Pulsed to generate a NAK handshake packet.

	issue_stall: Signal(), input
	Pulsed to generate a STALL handshake.

	tx: UTMITransmitInterface
	Interface to the relevant UTMI interface.

	
class luna.gateware.usb.usb2.packet.USBInterpacketTimer(*args, src_loc_at=0, **kwargs)

	Bases: Elaboratable

Module that tracks inter-packet timings, enforcing spec-mandated packet gaps.

Ports other than speed are added dynamically via :method:add_interface`.

	
speed

	The device’s current operating speed. Should be a USBSpeed enumeration value –
0 for high, 1 for full, 2 for low.

	Type:

	Signal(2), input

	
add_interface(interface: InterpacketTimerInterface)

	Adds a connection to a user of this module.

This module performs no multiplexing; it’s assumed only one interface will be active at a time.

	Parameters:

	interface (InterpacketTimerInterface) – The InterPacketTimer interface to add to our module.

	
class luna.gateware.usb.usb2.packet.USBTokenDetector(*args, src_loc_at=0, **kwargs)

	Bases: Elaboratable

Gateware that parses token packets and generates relevant events.

	
interface

	The interface that contains token detection events, and information about detected tokens.

	Type:

	TokenDetectorInterface

	
speed

	Carries a USBSpeed constant identifying the device’s current operating speed.

	Type:

	Signal(2), input

	
address

	If :parameter:filter_by_address is true, this is an input that filters our event detector so
it only reports tokens directed at a given address.
If filter_by_address is false, this is an output that contains the address of the most
recent token.

	Type:

	Signal(7), input -or- output

	Parameters:

	
	utmi (UTMIInterface) – The UTMI bus to observe.

	filter_by_address (bool) – If true, this detector will only report events for the address supplied in the address[] field.

	
SOF_PID = 5

	

	
TOKEN_SUFFIX = 1

	

usb2.reset Components

Gateware that handles USB bus resets & speed detection.

	
class luna.gateware.usb.usb2.reset.USBResetSequencer(*args, src_loc_at=0, **kwargs)

	Bases: Elaboratable

Gateware that detects reset signaling on the USB bus.

	
low_speed_only

	If set, the device will be forced to operate as a low-speed device.

	Type:

	Signal(), input

	
prevent_high_speed

	If set, the device will be prohibited from entering high-speed states; and will thus
act like it’s a full speed device (low_speed_only = 0).

	Type:

	Signal(), input

	
bus_busy

	Hold-off signal that indicates that driving the bus should be delayed.

	Type:

	Signal(), input

	
vbus_connected

	Indicates that the device is connected to VBUS. When this is de-asserted, the device will
be held in perpetual bus reset, and reset handshaking will be disabled.

	Type:

	Signal(), input

	
line_state

	The UTMI linestate signals; used to read the current state of the USB D+ and D- lines.

	Type:

	Signal(2), input

	
bus_reset

	
	Strobe; pulses high for one cycle when a bus reset is detected. This signal indicates that the
	device should return to unaddressed, unconfigured, and should not longer be in High Speed mode.

	Type:

	Signal(), output

	
suspended

	Held high while the USB device should be in suspend. This technically indicates that the device should
drop down to consuming suspend current (<= 2.5mA), but very few devices are compliant with this requirement.
Either way, a polite device might reduce its power consumption while in suspend.

	Type:

	Signal(), output

	
current_speed

	A USBSpeed value that indicates the current operating speed. Used both to drive our device’s
knowledge of operating speed and to drive our PHY’s speed selection.

	Type:

	Signal(2), output

	
operating_mode

	The current UTMI operating mode. Used to select whether we’re driving the USB bus directly;
or whether we’re letting the PHY handle NRZI/bit-stuffing.

	Type:

	Signal(2), output

	
termination_select

	Determines the bus termination mode. In LS/FS, this determines the presence of our presence-detect
pull-up. In HS mode, this determines whether the USB high-speed termination is present (0), or
whether we’re in chirp mode (1).

	Type:

	Signal(), output, default=1

	
tx

	– Our UTMI transmit interface; used to drive chirp signaling onto the bus.

	Type:

	UTMITransmitInterface, output stream

Gateware Endpoint Interfaces

The LUNA architecture separates gateware into two distinct groups: the core device, responsible for the
low-level communications common to all devices, and endpoint interfaces, which perform high-level communications,
and which are often responsible for tailoring each device for its intended application:

[image: ../_images/USBDevice.svg]
Every useful LUNA device features at least one endpoint interface capable of at least handling enumeration. Many
devices will provide multiple endpoint interfaces – often one for each endpoint – but this is not a requirement.
Incoming token, data, and handshake packets are routed to all endpoint interfaces; it is up to each endpoint interface
to decide which packets to respond to.

Note: terms like “interface” are overloaded: the single term “interface” can refer both to hardware interfaces
and to the USB concept of an Interface. The “interface” in “endpoint interface” is an instance of the former;
they are conceptually distinct from USB interfaces. To reduce conflation, we’ll use the full phrase “endpoint
interface” in this document.

As a single endpoint interface may handle packets for multiple endpoints; it is entirely possible to have a device
that talks on multiple endpoints, but which uses only one endpoint interface.

Exclusivity

A LUNA USBDevice performs no arbitration – if two endpoint interfaces attempt to transmit at the same time, the
result is undefined; and often will result in undesirable output. Accordingly, it’s important to ensure a “clear
delineation of responsibility” across endpoint interfaces. This is often accomplished by ensuring only one endpoint
interface handles a given endpoint or request type.

usb2.endpoint Components

Gateware for working with abstract endpoints.

	
class luna.gateware.usb.usb2.endpoint.EndpointInterface

	Bases: object

Interface that connects a USB endpoint module to a USB device.

Many non-control endpoints won’t need to use the latter half of this structure;
it will be automatically removed by the relevant synthesis tool.

	
tokenizer

	Interface to our TokenDetector; notifies us of USB tokens.

	Type:

	TokenDetectorInterface, to detector

	
rx

	Receive interface for this endpoint.

	Type:

	USBOutStreamInterface, input stream to endpoint

	
rx_complete

	Strobe that indicates that the concluding rx-stream was valid (CRC check passed).

	Type:

	Signal(), input to endpoint

	
rx_ready_for_response

	Strobe that indicates that we’re ready to respond to a complete transmission.
Indicates that an interpacket delay has passed after an rx_complete strobe.

	Type:

	Signal(), input to endpoint

	
rx_invalid

	Strobe that indicates that the concluding rx-stream was invalid (CRC check failed).

	Type:

	Signal(), input to endpoint

	
rx_pid_toggle

	Value for the data PID toggle; 0 indicates we’re receiving a DATA0; 1 indicates Data1.

	Type:

	Signal(), input to endpoint

	
tx

	Transmit interface for this endpoint.

	Type:

	USBInStreamInterface, output stream from endpoint

	
tx_pid_toggle

	Value for the data PID toggle; 0 indicates we’ll send DATA0; 1 indicates DATA1.
2 indicates we’ll send DATA2, while 3 indicates we’ll send DATAM.

	Type:

	Signal(2), output from endpoint

	
handshakes_in

	Carries handshakes detected from the host.

	Type:

	HandshakeExchangeInterface, input to endpoint

	
handshakes_out

	Carries handshakes generate by this endpoint.

	Type:

	HandshakeExchangeInterface, output from endpoint

	
speed

	The device’s current operating speed. Should be a USBSpeed enumeration value –
0 for high, 1 for full, 2 for low.

	Type:

	Signal(2), input to endpoint

	
active_address

	Contains the device’s current address.

	Type:

	Signal(7), input to endpoint

	
address_changed

	Strobe; pulses high when the device’s address should be changed.

	Type:

	Signal(), output from endpoint.

	
new_address

	When address_changed is high, this field contains the address that should be adopted.

	Type:

	Signal(7), output from endpoint

	
active_config

	The configuration number of the active configuration.

	Type:

	Signal(8), input to endpoint

	
config_changed

	Strobe; pulses high when the device’s configuration should be changed.

	Type:

	Signal(), output from endpoint

	
new_config

	When config_changed is high, this field contains the configuration that should be applied.

	Type:

	Signal(8)

	
timer

	Interface to our interpacket timer.

	Type:

	InterpacketTimerInterface

	
data_crc

	Control connection for our data-CRC unit.

	Type:

	DataCRCInterface

	
class luna.gateware.usb.usb2.endpoint.USBEndpointMultiplexer(*args, src_loc_at=0, **kwargs)

	Bases: Elaboratable

Multiplexes access to the resources shared between multiple endpoint interfaces.

Interfaces are added using add_interface.

	
shared

	The post-multiplexer endpoint interface.

	Type:

	EndpointInterface

	
add_interface(interface: EndpointInterface)

	Adds a EndpointInterface to the multiplexer.

Arbitration is not performed; it’s expected only one endpoint will be
driving the transmit lines at a time.

	
or_join_interface_signals(m, signal_for_interface)

	Joins together a set of signals on each interface by OR’ing the signals together.

Provided Endpoint Interfaces

The LUNA library ships with a few provided endpoint interfaces. These include:

	The USBControlEndpoint, which provides gateware that facilitates handling USB control requests.
To handle requests via this endpoint, the user attaches one or more request handlers interfaces; which
are documented in their own section.

	The FIFOInterface classes, which implement simple, FIFO-based software interfaces. These lightweight
interfaces are meant to allow simple CPU control over one or more endpoints. These are based off of the
ValentyUSB eptri interface; and will eventually be binary-compatible with existing eptri code.

usb2.control Components

Low-level USB transciever gateware – control transfer components.

	
class luna.gateware.usb.usb2.control.USBControlEndpoint(*args, src_loc_at=0, **kwargs)

	Bases: Elaboratable

Gateware that manages control request data progression.

This class is used by creating one or more request handler modules; which define how requests
are handled. These handlers can be bound using add_request_handler.

For convenience, this module can also automatically be populated with a StandardRequestHandler
via the add_standard_request_handlers.

	
interface

	The interface from this endpoint to the core device hardware.

	Type:

	EndpointInterface

	Parameters:

	
	utmi (UTMI bus, or equivalent translator) – The UTMI bus we’ll monitor for data. We’ll consider this read-only.

	endpoint_number (int, optional) – The endpoint number for this control interface; defaults to (and almost always should
be) zero.

	standalone (bool) – Debug parameter. If true, this module will operate without external components;
i.e. without an internal data-CRC generator, or tokenizer. In this case, tokenizer
and timer should be set to None; and will be ignored.

	
add_request_handler(request_handler)

	Adds a ControlRequestHandler module to this control endpoint.

No arbitration is performed between request handlers; so it’s important
that request handlers not overlap in the requests they handle.

	
add_standard_request_handlers(descriptors: DeviceDescriptorCollection, **kwargs)

	Adds a handlers for the standard USB requests.

This will handle all Standard-type requests; so any additional request handlers
must not handle Standard requests.

Parameters will be passed on to StandardRequestHandler.

usb2.interfaces.eptri Components

Bulk Endpoint Helpers / usb2.endpoints.stream Components

Endpoint interfaces for working with streams.

The endpoint interfaces in this module provide endpoint interfaces suitable for
connecting streams to USB endpoints.

	
class luna.gateware.usb.usb2.endpoints.stream.USBMultibyteStreamInEndpoint(*args, src_loc_at=0, **kwargs)

	Bases: Elaboratable

Endpoint interface that transmits a simple data stream to a host.

This interface is suitable for a single bulk or interrupt endpoint.

This variant accepts streams with payload sizes that are a multiple of one byte; data is always
transmitted to the host in little-endian byte order.

This endpoint interface will automatically generate ZLPs when a stream packet would end without
a short data packet. If the stream’s last signal is tied to zero, then a continuous stream of
maximum-length-packets will be sent with no inserted ZLPs.

This implementation is double buffered; and can store a single packets worth of data while transmitting
a second packet.

	
stream

	Full-featured stream interface that carries the data we’ll transmit to the host.

	Type:

	StreamInterface, input stream

	
interface

	Communications link to our USB device.

	Type:

	EndpointInterface

	Parameters:

	
	byte_width (int) – The number of bytes to be accepted at once.

	endpoint_number (int) – The endpoint number (not address) this endpoint should respond to.

	max_packet_size (int) – The maximum packet size for this endpoint. Should match the wMaxPacketSize provided in the
USB endpoint descriptor.

	
class luna.gateware.usb.usb2.endpoints.stream.USBStreamInEndpoint(*args, src_loc_at=0, **kwargs)

	Bases: Elaboratable

Endpoint interface that transmits a simple data stream to a host.

This interface is suitable for a single bulk or interrupt endpoint.

This endpoint interface will automatically generate ZLPs when a stream packet would end without
a short data packet. If the stream’s last signal is tied to zero, then a continuous stream of
maximum-length-packets will be sent with no inserted ZLPs.

The flush input may be asserted to to cause all pending data to be transmitted as soon as
possible. When flush is asserted, packets of varying length will be sent as needed, according
to the data available.

This implementation is double buffered; and can store a single packets worth of data while transmitting
a second packet.

	
stream

	Full-featured stream interface that carries the data we’ll transmit to the host.

	Type:

	StreamInterface, input stream

	
flush

	Assert to cause all pending data to be transmitted as soon as possible.

	Type:

	Signal(), input

	
discard

	Assert to cause all pending data to be discarded.

	Type:

	Signal(), input

	
interface

	Communications link to our USB device.

	Type:

	EndpointInterface

	Parameters:

	
	endpoint_number (int) – The endpoint number (not address) this endpoint should respond to.

	max_packet_size (int) – The maximum packet size for this endpoint. Should match the wMaxPacketSize provided in the
USB endpoint descriptor.

	
class luna.gateware.usb.usb2.endpoints.stream.USBStreamOutEndpoint(*args, src_loc_at=0, **kwargs)

	Bases: Elaboratable

Endpoint interface that receives data from the host, and produces a simple data stream.

This interface is suitable for a single bulk or interrupt endpoint.

	
stream

	Full-featured stream interface that carries the data we’ve received from the host.

	Type:

	StreamInterface, output stream

	
interface

	Communications link to our USB device.

	Type:

	EndpointInterface

	Parameters:

	
	endpoint_number (int) – The endpoint number (not address) this endpoint should respond to.

	max_packet_size (int) – The maximum packet size for this endpoint. If this there isn’t max_packet_size space in
the endpoint buffer, this endpoint will NAK (or participate in the PING protocol.)

	buffer_size (int, optional) – The total amount of data we’ll keep in the buffer; typically two max-packet-sizes or more.
Defaults to twice the maximum packet size.

Interrupt Endpoint Helpers / usb2.endpoints.status Components

Endpoint interfaces for providing status updates to the host.

These are mainly meant for use with interrupt endpoints; and allow a host to e.g.
repeatedly poll a device for status.

	
class luna.gateware.usb.usb2.endpoints.status.USBSignalInEndpoint(*args, src_loc_at=0, **kwargs)

	Bases: Elaboratable

Endpoint that transmits the value of a signal to a host whenever polled.

This is intended to be usable to implement a simple interrupt endpoint that polls for a status signal.

	
signal

	The signal to be relayed to the host. This signal’s current value will be relayed each time the
host polls our endpoint.

	Type:

	Signal(<variable width>), input

	
interface

	Communications link to our USB device.

	Type:

	EndpointInterface

	
status_read_complete

	Strobe that pulses high for a single usb-domain cycle each time a status read is complete.

	Type:

	Signal(), output

	Parameters:

	
	width (int) – The width of the signal we’ll relay up to the host, in bits.

	endpoint_number (int) – The endpoint number (not address) this endpoint should respond to.

	endianness (str, "big" or "little", optional) – The endianness with which to send the data. Defaults to little endian.

	signal_domain (str, optional) – The name of the domain :attr:signal is clocked from. If this value is anything other than
“usb”, the signal will automatically be synchronized to the USB clock domain.

Self-made Hardware Bringup

This guide is intended to help you bring up a LUNA board you’ve built
yourself. If you’ve received your board from Great Scott Gadgets, it
should already be set up, and you shouldn’t need to follow these steps.

Prerequisites

	A LUNA board with a populated Debug Controller microprocessor. This
is the SAMD microcontroller located in the Debug section at the
bottom of the board. When powering the board, the test points should
have the marked voltages. The FPGA LEDs might be dimly lit.

	A programmer capable of uploading firmware via SWD. Examples include
the Black Magic
Probe [https://github.com/blacksphere/blackmagic]; the Segger
J-Link [https://www.segger.com/products/debug-probes/j-link/], and
many OpenOCD compatible
boards [http://openocd.org/doc/html/Debug-Adapter-Hardware.html].

	A toolchain capable of building binaries for Cortex-M0 processors,
such as the GNU Arm
Embedded [https://developer.arm.com/tools-and-software/open-source-software/developer-tools/gnu-toolchain/gnu-rm]
toolchain. If you’re using Linux or macOS, you’ll likely want to
fetch this using a package manager; a suitable toolchain may be
called something like arm-none-eabi-gcc.

	A DFU programming utility, such as
dfu-util [http://dfu-util.sourceforge.net/].

Bring-up Process

The high-level process for bringing up your board is as follows:

	Compile and upload the Saturn-V bootloader, which allows Debug
Controller to program itself.

	Compile and upload the Apollo Debug Controller firmware, which
allows FPGA configuration & flashing; and provides debug interfaces
for working with the FPGA.

	Install the luna tools, and run through the self-test procedures
to validate that your board is working.

Build/upload Saturn-V

The “recovery mode (RVM)” bootloader for LUNA boards is named
Saturn-V; as it’s the first stage in “getting to LUNA”. The bootloader
is located in [in its own repository](https://github.com/greatscottgadgets/saturn-v).

You can clone the bootloader using git:

$ git clone https://github.com/greatscottgadgets/saturn-v

Build the DFU bootloader by invoking make. An example invocation
for modern LUNA hardware might look like:

$ cd saturn-v
$ make

If you’re building a board that predates r0.3 hardware, you’ll need to specify
the board you’re building for:

$ cd saturn-v
$ make BOARD=luna_d21

The build should yield two useful build products: bootloader.elf and
bootloader.bin; your SWD programmer will likely consume one of these
two files.

Next, connect your SWD programmer to the header labeled uC, and
upload bootloader image. You can use both the ports labelled
Sideband and Main Host to power the board in this process.
If you’re using the Black Magic Probe, this might look like:

$ arm-none-eabi-gdb -nx --batch \
 -ex 'target extended-remote /dev/ttyACM0' \
 -ex 'monitor swdp_scan' \
 -ex 'attach 1' \
 -ex 'load' \
 -ex 'kill' \
 bootloader.elf

If you are using openocd, the process might look similar to the following
(add the configuration file for your SWD adapter:

$ openocd -f openocd/scripts/target/at91samdXX.cfg
Open On-Chip Debugger 0.11.0-rc2
Licensed under GNU GPL v2
Info : Listening on port 4444 for telnet connections
Info : clock speed 400 kHz
Info : SWD DPIDR 0x0bc11477
Info : at91samd.cpu: hardware has 4 breakpoints, 2 watchpoints
Info : at91samd.cpu: external reset detected

If your programmer works best with .bin files, be sure to upload the
bootloader.bin to the start of flash (address 0x00000000).

Once the bootloader is installed, you should see LED A blinking
rapidly. This is the indication that your board is in Recovery Mode
(RVM), and can be programmed via DFU.

You can verify that the board is DFU-programmable by running
dfu-util while connected to the USB port labelled Sideband:

$ dfu-util --list
dfu-util 0.9

Copyright 2005-2009 Weston Schmidt, Harald Welte and OpenMoko Inc.
Copyright 2010-2016 Tormod Volden and Stefan Schmidt
This program is Free Software and has ABSOLUTELY NO WARRANTY
Please report bugs to http://sourceforge.net/p/dfu-util/tickets/

Found DFU: [1d50:615c] ver=0000, devnum=22, cfg=1, intf=0, path="2-3.3.1.2", alt=1, name="SRAM"
Found DFU: [1d50:615c] ver=0000, devnum=22, cfg=1, intf=0, path="2-3.3.1.2", alt=0, name="Flash"

If your device shows up as a LUNA board, congratulations! You’re ready
to move on to the next step.

Optional: Bootloader Locking

Optionally, you can reversibly lock the bootloader region of the Debug
Controller, preventing you from accidentally overwriting the bootloader.
This is most useful for users developing code for the Debug Controller.

If you choose to lock the bootloader, you should lock the first 4KiB
of flash. Note that currently, the bootloader lock feature of Black
Magic Probe devices always locks 8KiB of flash; and thus cannot be
used for LUNA.

Build/upload Apollo

The next bringup step is to upload the Apollo Debug Controller
firmware, which will provide an easy way to interface with the board’s
FPGA and any gateware running on it. The Apollo source is located
[in its own repository](https://github.com/greatscottgadgets/apollo).

You can clone the bootloader using git:

$ git clone https://github.com/greatscottgadgets/apollo

You can build and run the firmware in one step by invoking make. In
order to ensure your firmware matches the hardware it’s running on,
you’ll need to provide the hardware revision using the
BOARD_REVISION_MAJOR and BOARD_REVISION_MINOR make variables.

The board’s hardware revision is printed on its silkscreen in a
r(MAJOR).(MINOR) format. Board r0.2 would have a
BOARD_REVISION_MAJOR=0 and a BOARD_REVISION_MINOR=2. If your
board’s revision ends in a +, do not include it in the revision
number.

An example invocation for a r0.2 board might be:

$ make BOARD_REVISION_MAJOR=0 BOARD_REVISION_MINOR=2 dfu

Once programming is complete, only LED E should be blinking;
indicating that the Apollo firmware is idle.

Running Self-Tests

The final step of bringup is to validate the functionality of your
hardware. This is most easily accomplished by running LUNA’s interactive
self-test applet.

Before you can run the applet, you’ll need to have a working luna
development environment. See [[Setting up the development environment]]
to get your environment set up.

Next, we can check to make sure your LUNA board is recognized by the
LUNA toolchain. Running the apollo info command will list any
detected devices:

$ apollo info
Detected a LUNA device!
 Hardware: LUNA r0.2
 Serial number: <snip>

Once you’ve validated connectivity, you’re ready to try running the
interactive-test applet. From the root of the repository:

$ python3 applets/interactive-test.py

Troubleshooting

Issue: some of the build files weren’t found; make produces a message like “ no rule to make target “.

Chances are, your clone of LUNA is was pulled down without its
submodules. You can pull down the relevant submodules using git:

$ git submodule update --init --recursive

Issue: the ``apollo info`` command doesn’t see a connected board.

On Linux, this can be caused by a permissions issue. Check first for the
presence of your device using lsusb; if you see a device with the
VID/PID 1d50:615c, your board is present – and you likely have a
permissions issue. You’ll likely need to install permission-granting
udev rules.

 Python Module Index

 l

 		 	

 		
 l	

 	[image: -]
 	
 luna	

 	
 	
 luna.gateware.usb.usb2.control	

 	
 	
 luna.gateware.usb.usb2.device	

 	
 	
 luna.gateware.usb.usb2.endpoint	

 	
 	
 luna.gateware.usb.usb2.endpoints.status	

 	
 	
 luna.gateware.usb.usb2.endpoints.stream	

 	
 	
 luna.gateware.usb.usb2.packet	

 	
 	
 luna.gateware.usb.usb2.reset	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | H
 | I
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V

A

 	
 	ack (luna.gateware.usb.usb2.packet.HandshakeExchangeInterface attribute)

 	ACK_PID (luna.gateware.usb.usb2.packet.USBHandshakeDetector attribute)

 	active_address (luna.gateware.usb.usb2.endpoint.EndpointInterface attribute)

 	active_config (luna.gateware.usb.usb2.endpoint.EndpointInterface attribute)

 	active_pid (luna.gateware.usb.usb2.packet.USBDataPacketReceiver attribute)

 	add_control_endpoint() (luna.gateware.usb.usb2.device.USBDevice method)

 	add_endpoint() (luna.gateware.usb.usb2.device.USBDevice method)

 	add_interface() (luna.gateware.usb.usb2.endpoint.USBEndpointMultiplexer method)

 	(luna.gateware.usb.usb2.packet.USBDataPacketCRC method)

 	(luna.gateware.usb.usb2.packet.USBInterpacketTimer method)

 	
 	add_request_handler() (luna.gateware.usb.usb2.control.USBControlEndpoint method)

 	add_standard_control_endpoint() (luna.gateware.usb.usb2.device.USBDevice method)

 	add_standard_request_handlers() (luna.gateware.usb.usb2.control.USBControlEndpoint method)

 	address (luna.gateware.usb.usb2.packet.TokenDetectorInterface attribute)

 	(luna.gateware.usb.usb2.packet.USBTokenDetector attribute)

 	address_changed (luna.gateware.usb.usb2.endpoint.EndpointInterface attribute)

 	attach() (luna.gateware.usb.usb2.packet.InterpacketTimerInterface method)

B

 	
 	bus_busy (luna.gateware.usb.usb2.reset.USBResetSequencer attribute)

 	
 	bus_reset (luna.gateware.usb.usb2.reset.USBResetSequencer attribute)

C

 	
 	config_changed (luna.gateware.usb.usb2.endpoint.EndpointInterface attribute)

 	connect (luna.gateware.usb.usb2.device.USBDevice attribute)

 	crc (luna.gateware.usb.usb2.packet.DataCRCInterface attribute)

 	(luna.gateware.usb.usb2.packet.USBDataPacketGenerator attribute)

 	
 	crc_mismatch (luna.gateware.usb.usb2.packet.USBDataPacketReceiver attribute)

 	current_speed (luna.gateware.usb.usb2.reset.USBResetSequencer attribute)

D

 	
 	data_crc (luna.gateware.usb.usb2.endpoint.EndpointInterface attribute)

 	(luna.gateware.usb.usb2.packet.USBDataPacketDeserializer attribute)

 	(luna.gateware.usb.usb2.packet.USBDataPacketReceiver attribute)

 	
 	data_pid (luna.gateware.usb.usb2.packet.USBDataPacketGenerator attribute)

 	DataCRCInterface (class in luna.gateware.usb.usb2.packet)

 	detected (luna.gateware.usb.usb2.packet.USBHandshakeDetector attribute)

 	discard (luna.gateware.usb.usb2.endpoints.stream.USBStreamInEndpoint attribute)

E

 	
 	endpoint (luna.gateware.usb.usb2.packet.TokenDetectorInterface attribute)

 	
 	EndpointInterface (class in luna.gateware.usb.usb2.endpoint)

F

 	
 	flush (luna.gateware.usb.usb2.endpoints.stream.USBStreamInEndpoint attribute)

 	frame (luna.gateware.usb.usb2.packet.TokenDetectorInterface attribute)

 	
 	frame_number (luna.gateware.usb.usb2.device.USBDevice attribute)

 	full_speed_only (luna.gateware.usb.usb2.device.USBDevice attribute)

H

 	
 	HandshakeExchangeInterface (class in luna.gateware.usb.usb2.packet)

 	
 	handshakes_in (luna.gateware.usb.usb2.endpoint.EndpointInterface attribute)

 	handshakes_out (luna.gateware.usb.usb2.endpoint.EndpointInterface attribute)

I

 	
 	interface (luna.gateware.usb.usb2.control.USBControlEndpoint attribute)

 	(luna.gateware.usb.usb2.endpoints.status.USBSignalInEndpoint attribute)

 	(luna.gateware.usb.usb2.endpoints.stream.USBMultibyteStreamInEndpoint attribute)

 	(luna.gateware.usb.usb2.endpoints.stream.USBStreamInEndpoint attribute)

 	(luna.gateware.usb.usb2.endpoints.stream.USBStreamOutEndpoint attribute)

 	(luna.gateware.usb.usb2.packet.USBTokenDetector attribute)

 	
 	InterpacketTimerInterface (class in luna.gateware.usb.usb2.packet)

 	is_in (luna.gateware.usb.usb2.packet.TokenDetectorInterface attribute)

 	is_out (luna.gateware.usb.usb2.packet.TokenDetectorInterface attribute)

 	is_ping (luna.gateware.usb.usb2.packet.TokenDetectorInterface attribute)

 	is_setup (luna.gateware.usb.usb2.packet.TokenDetectorInterface attribute)

L

 	
 	length (luna.gateware.usb.usb2.packet.USBDataPacketDeserializer attribute)

 	line_state (luna.gateware.usb.usb2.reset.USBResetSequencer attribute)

 	low_speed_only (luna.gateware.usb.usb2.device.USBDevice attribute)

 	(luna.gateware.usb.usb2.reset.USBResetSequencer attribute)

 	
 luna.gateware.usb.usb2.control

 	module

 	
 luna.gateware.usb.usb2.device

 	module

 	
 luna.gateware.usb.usb2.endpoint

 	module

 	
 	
 luna.gateware.usb.usb2.endpoints.status

 	module

 	
 luna.gateware.usb.usb2.endpoints.stream

 	module

 	
 luna.gateware.usb.usb2.packet

 	module

 	
 luna.gateware.usb.usb2.reset

 	module

M

 	
 	microframe_number (luna.gateware.usb.usb2.device.USBDevice attribute)

 	
 module

 	luna.gateware.usb.usb2.control

 	luna.gateware.usb.usb2.device

 	luna.gateware.usb.usb2.endpoint

 	luna.gateware.usb.usb2.endpoints.status

 	luna.gateware.usb.usb2.endpoints.stream

 	luna.gateware.usb.usb2.packet

 	luna.gateware.usb.usb2.reset

N

 	
 	nak (luna.gateware.usb.usb2.packet.HandshakeExchangeInterface attribute)

 	NAK_PID (luna.gateware.usb.usb2.packet.USBHandshakeDetector attribute)

 	new_address (luna.gateware.usb.usb2.endpoint.EndpointInterface attribute)

 	new_config (luna.gateware.usb.usb2.endpoint.EndpointInterface attribute)

 	new_frame (luna.gateware.usb.usb2.device.USBDevice attribute)

 	(luna.gateware.usb.usb2.packet.TokenDetectorInterface attribute)

 	
 	new_packet (luna.gateware.usb.usb2.packet.USBDataPacketDeserializer attribute)

 	new_token (luna.gateware.usb.usb2.packet.TokenDetectorInterface attribute)

 	nyet (luna.gateware.usb.usb2.packet.HandshakeExchangeInterface attribute)

 	NYET_PID (luna.gateware.usb.usb2.packet.USBHandshakeDetector attribute)

O

 	
 	operating_mode (luna.gateware.usb.usb2.reset.USBResetSequencer attribute)

 	
 	or_join_interface_signals() (luna.gateware.usb.usb2.endpoint.USBEndpointMultiplexer method)

P

 	
 	packet (luna.gateware.usb.usb2.packet.USBDataPacketDeserializer attribute)

 	packet_complete (luna.gateware.usb.usb2.packet.USBDataPacketReceiver attribute)

 	packet_id (luna.gateware.usb.usb2.packet.USBDataPacketDeserializer attribute)

 	(luna.gateware.usb.usb2.packet.USBDataPacketReceiver attribute)

 	
 	pid (luna.gateware.usb.usb2.packet.TokenDetectorInterface attribute)

 	prevent_high_speed (luna.gateware.usb.usb2.reset.USBResetSequencer attribute)

R

 	
 	ready_for_response (luna.gateware.usb.usb2.packet.TokenDetectorInterface attribute)

 	(luna.gateware.usb.usb2.packet.USBDataPacketReceiver attribute)

 	reset_detected (luna.gateware.usb.usb2.device.USBDevice attribute)

 	rx (luna.gateware.usb.usb2.endpoint.EndpointInterface attribute)

 	rx_activity_led (luna.gateware.usb.usb2.device.USBDevice attribute)

 	rx_complete (luna.gateware.usb.usb2.endpoint.EndpointInterface attribute)

 	
 	rx_data (luna.gateware.usb.usb2.packet.USBDataPacketCRC attribute)

 	rx_invalid (luna.gateware.usb.usb2.endpoint.EndpointInterface attribute)

 	rx_pid_toggle (luna.gateware.usb.usb2.endpoint.EndpointInterface attribute)

 	rx_ready_for_response (luna.gateware.usb.usb2.endpoint.EndpointInterface attribute)

 	rx_timeout (luna.gateware.usb.usb2.packet.InterpacketTimerInterface attribute)

 	rx_valid (luna.gateware.usb.usb2.packet.USBDataPacketCRC attribute)

S

 	
 	shared (luna.gateware.usb.usb2.endpoint.USBEndpointMultiplexer attribute)

 	signal (luna.gateware.usb.usb2.endpoints.status.USBSignalInEndpoint attribute)

 	sof_detected (luna.gateware.usb.usb2.device.USBDevice attribute)

 	SOF_PID (luna.gateware.usb.usb2.packet.USBTokenDetector attribute)

 	speed (luna.gateware.usb.usb2.endpoint.EndpointInterface attribute)

 	(luna.gateware.usb.usb2.packet.USBInterpacketTimer attribute)

 	(luna.gateware.usb.usb2.packet.USBTokenDetector attribute)

 	stall (luna.gateware.usb.usb2.packet.HandshakeExchangeInterface attribute)

 	STALL_PID (luna.gateware.usb.usb2.packet.USBHandshakeDetector attribute)

 	
 	start (luna.gateware.usb.usb2.packet.DataCRCInterface attribute)

 	(luna.gateware.usb.usb2.packet.InterpacketTimerInterface attribute)

 	status_read_complete (luna.gateware.usb.usb2.endpoints.status.USBSignalInEndpoint attribute)

 	stream (luna.gateware.usb.usb2.endpoints.stream.USBMultibyteStreamInEndpoint attribute)

 	(luna.gateware.usb.usb2.endpoints.stream.USBStreamInEndpoint attribute)

 	(luna.gateware.usb.usb2.endpoints.stream.USBStreamOutEndpoint attribute)

 	(luna.gateware.usb.usb2.packet.USBDataPacketGenerator attribute)

 	(luna.gateware.usb.usb2.packet.USBDataPacketReceiver attribute)

 	suspended (luna.gateware.usb.usb2.device.USBDevice attribute)

 	(luna.gateware.usb.usb2.reset.USBResetSequencer attribute)

T

 	
 	termination_select (luna.gateware.usb.usb2.reset.USBResetSequencer attribute)

 	timer (luna.gateware.usb.usb2.endpoint.EndpointInterface attribute)

 	(luna.gateware.usb.usb2.packet.USBDataPacketReceiver attribute)

 	TOKEN_SUFFIX (luna.gateware.usb.usb2.packet.USBTokenDetector attribute)

 	TokenDetectorInterface (class in luna.gateware.usb.usb2.packet)

 	tokenizer (luna.gateware.usb.usb2.endpoint.EndpointInterface attribute)

 	tx (luna.gateware.usb.usb2.endpoint.EndpointInterface attribute)

 	(luna.gateware.usb.usb2.packet.USBDataPacketGenerator attribute)

 	(luna.gateware.usb.usb2.reset.USBResetSequencer attribute)

 	
 	tx_activity_led (luna.gateware.usb.usb2.device.USBDevice attribute)

 	tx_allowed (luna.gateware.usb.usb2.packet.InterpacketTimerInterface attribute)

 	tx_data (luna.gateware.usb.usb2.packet.USBDataPacketCRC attribute)

 	tx_pid_toggle (luna.gateware.usb.usb2.endpoint.EndpointInterface attribute)

 	tx_timeout (luna.gateware.usb.usb2.packet.InterpacketTimerInterface attribute)

 	tx_valid (luna.gateware.usb.usb2.packet.USBDataPacketCRC attribute)

U

 	
 	USBControlEndpoint (class in luna.gateware.usb.usb2.control)

 	USBDataPacketCRC (class in luna.gateware.usb.usb2.packet)

 	USBDataPacketDeserializer (class in luna.gateware.usb.usb2.packet)

 	USBDataPacketGenerator (class in luna.gateware.usb.usb2.packet)

 	USBDataPacketReceiver (class in luna.gateware.usb.usb2.packet)

 	USBDevice (class in luna.gateware.usb.usb2.device)

 	USBEndpointMultiplexer (class in luna.gateware.usb.usb2.endpoint)

 	USBHandshakeDetector (class in luna.gateware.usb.usb2.packet)

 	
 	USBHandshakeGenerator (class in luna.gateware.usb.usb2.packet)

 	USBInterpacketTimer (class in luna.gateware.usb.usb2.packet)

 	USBMultibyteStreamInEndpoint (class in luna.gateware.usb.usb2.endpoints.stream)

 	USBResetSequencer (class in luna.gateware.usb.usb2.reset)

 	USBSignalInEndpoint (class in luna.gateware.usb.usb2.endpoints.status)

 	USBStreamInEndpoint (class in luna.gateware.usb.usb2.endpoints.stream)

 	USBStreamOutEndpoint (class in luna.gateware.usb.usb2.endpoints.stream)

 	USBTokenDetector (class in luna.gateware.usb.usb2.packet)

V

 	
 	vbus_connected (luna.gateware.usb.usb2.reset.USBResetSequencer attribute)

 nav.xhtml

 Table of Contents

 		
 LUNA: USB Multitool and Gateware Library

 		
 Introduction

 		
 Status & Support

 		
 Support for Device Mode

 		
 Support for Host Mode

 		
 “Reference” Boards

 		
 Getting Started

 		
 Setting up a Build Environment

 		
 Prerequisites

 		
 Installation

 		
 Testing

 		
 The apollo utility.

 		
 LUNA On Your Own Hardware

 		
 High-Speed via a ULPI PHY

 		
 Full-Speed using FPGA I/O

 		
 Core USB 2.0 Device Gateware

 		
 Conceptual Components

 		
 Token Detector

 		
 Handshake Detector

 		
 Data Packet Receiver

 		
 Device State Manager

 		
 Handshake Generator

 		
 Data Packet Transmitter

 		
 Data CRC Unit

 		
 Interpacket Timer

 		
 Reset/Suspend Sequencer

 		
 usb2.device Components

 		
 USBDevice

 		
 usb2.packet Components

 		
 DataCRCInterface

 		
 HandshakeExchangeInterface

 		
 InterpacketTimerInterface

 		
 TokenDetectorInterface

 		
 USBDataPacketCRC

 		
 USBDataPacketDeserializer

 		
 USBDataPacketGenerator

 		
 USBDataPacketReceiver

 		
 USBHandshakeDetector

 		
 USBHandshakeGenerator

 		
 USBInterpacketTimer

 		
 USBTokenDetector

 		
 usb2.reset Components

 		
 USBResetSequencer

 		
 Gateware Endpoint Interfaces

 		
 Exclusivity

 		
 usb2.endpoint Components

 		
 EndpointInterface

 		
 USBEndpointMultiplexer

 		
 Provided Endpoint Interfaces

 		
 usb2.control Components

 		
 USBControlEndpoint

 		
 usb2.interfaces.eptri Components

 		
 Bulk Endpoint Helpers / usb2.endpoints.stream Components

 		
 USBMultibyteStreamInEndpoint

 		
 USBStreamInEndpoint

 		
 USBStreamOutEndpoint

 		
 Interrupt Endpoint Helpers / usb2.endpoints.status Components

 		
 USBSignalInEndpoint

 		
 Self-made Hardware Bringup

 		
 Prerequisites

 		
 Bring-up Process

 		
 Build/upload Saturn-V

 		
 Optional: Bootloader Locking

 		
 Build/upload Apollo

 		
 Running Self-Tests

 		
 Troubleshooting

_static/file.png

_static/minus.png

_static/plus.png

_images/board_readme.jpg

_images/board_readme_side.jpg

